
CS251 Programming Languages Handout # 40
Wellesley College 8 May 2006

Scheme

1 Scheme Overview

Scheme is a block-structured, lexically-scoped, properly tail-recursive dialect of Lisp that supports
first-class functions and continuations. It was invented by Gerald Jay Sussman and Guy Steele, Jr.
at MIT in 1975, and has gained popularity as a teaching language and as an extension language (a
language for expressing abstractions built on top of a given set of primitives).

In this section, we will give a very brief overview of the Scheme language. For more details,
consult the Revised5 Report on the Algorithmic Language Scheme (R5RS), which can be found at
http://www.schemers.org/Documents/Standards/R5RS. In Sec. 2 we explain how to run Scheme

programs in the MIT Scheme implementation.
Except for some relatively minor differences in syntax and semantics, Scheme is very similar

to the Hoilic language we studied this semester. Both are mostly functional, lexically-scoped,
call-by-value languages in which all variables are bound to implicit cells. Fig. 1 shows some of the
correspondences between Hoilic and Scheme. Clearly the two languages are very similar!

Here are some important ways in which Scheme differs from Hoilic:

• In Hoilic, multi-parameter fun abstractions denote curried functions, and multi-argument
applications denote the application of curried functions. But in Scheme, lambda abstractions
are primitive multi-argument functions, and applications are primitive multi-argument appli-
cations. So while ((fun (a b) (+ a b)) 1) is legal inHoilic, ((lambda (a b) (+ a b)) 1)

is an error in Scheme.

• In Hoilic, applications of primitive operators like + are handled specially. In Scheme,
names like + are just variables that are bound in the global environment to functions that
can be applied like any other function. In particular, primitive names can be rebound in
Scheme but not in Hoilic. So (let ((+ *)) (+ 2 3)) evaluates to 6 in Scheme, but
(bind + * (+ 2 3)) evaluates to 5 in Hoilic.

• The Scheme cons operator makes a pair: e.g., (cons 1 2) yields the so-called “dotted pair”
(1 . 2). Lists are represented as a cdr-connected spine of pairs. For example, the list of
1, 2, and 3 is written (cons 1 (cons 2 (cons 3 ’()))). The printed notation for this list
is (1 2 3), which is an optimization of (1 . (2 . (3 . ()))) in which each dot “eats” a
pair of matching parentheses that follows it.

• Hoilic lists are immutable, but in Scheme, the head and tail slots of a list node can be
changed via set-car! and set-cdr!.

• Unlike Hoilic, Scheme has no top-level program form. A Scheme program is just a sequence
of top-level forms (definitions and expressions). These are evaluated one-by-one in a recursive

scope, so all functions introduced by top-level defines are mutually recursive.

Note that this differs from Ocaml, in which declarations are evaluated in nested sequential

scopes, and the special rec form is needed to declare groups of mutually recursive functions.
Another difference between Scheme and Ocaml is that in Scheme using (define I E) on

1

Phrase HOILIC Scheme

Numbers 42, -17 (integers only) 42, -17 (integers),
3.141 (floats),

6.023e23 (scientific notation),
7/3 (rational numbers),
3+5i (complex numbers)

Booleans #t, #f #t, #f

Characters ’a’, ’ ’, ’\t’, ’\n’ #\a, #\space, #\tab, #\newline

Strings "foo", "The string \"bar\"" "foo", "The string \"bar\""

Symbols (sym foo) (quote foo) or ’foo

Variable References I I

Abstractions (fun (Ifml1
. . . Ifmln

) Ebody) (lambda (Ifml1
. . . Ifmln

) Ebody)

Applications (Erator Erand1
. . . Erandn

) (Erator Erand1
. . . Erandn

)

Conditionals (if Etest Ethen Eelse) (if Etest Ethen Eelse)

Variable Assignments (<- Irhs Erhs) (set! Irhs Erhs)

Expression Sequences (seq E1 Ethen En) (begin E1 Ethen En)

Local Bindings (bind Iname Edefn Ebody) (let ((Iname Edefn)) Ebody)

Parallel Bindings

(bindpar ((Iname1
Edefn1

)
...

(Inamen Edefnn
))

Ebody)

(let ((Iname1
Edefn1

)
...

(Inamen Edefnn
))

Ebody)

Sequential Bindings

(bindseq ((Iname1
Edefn1

)
...

(Inamen Edefnn
))

Ebody)

(let* ((Iname1
Edefn1

)
...

(Inamen Edefnn
))

Ebody)

Recursive Bindings

(bindrec ((Iname1
Edefn1

)
...

(Inamen Edefnn
))

Ebody)

(letrec ((Iname1
Edefn1

)
...

(Inamen Edefnn
))

Ebody)

List Operations prep, head, tail, empty?, #e cons, car, cdr, null, ’()

Definitions (def I E) (define I E)

Function Definitions (def (Ifcn Ifml1
. . . Ifmln

) Ebody) (define (Ifcn Ifml1
. . . Ifmln

) Ebody)

Figure 1: Correspondences between Hoilic and Scheme.

2

an already-bound name I is equivalent to (set! I E) — i.e., it changes the contents of the
existing implicit cell. In contrast, in Ocaml performing let I = E on an already-bound
name I introduces a new name I that shadows the existing one. For example, the following
sequence of top-level Scheme forms yields the value 34, whereas the corresponding Ocaml

sequence yields 18.

(define a 1)

(define (add-a x) (+ x a))

(define a 17)

(add-a a)

2 MIT Scheme

MIT Scheme is the version of Scheme that we will use for Scheme programming. This section
describes the most important things you need to know in order to use MIT Scheme. For more
detailed information, you should consult the MIT Scheme User’s Manual, available at:

http://www.swiss.ai.mit.edu/projects/scheme/documentation/user.html.

We will be using an older release (Release 7.6) of MIT Scheme on the Linux machines. If you have
your own PC running Windows 95, 98, NT or Linux and would like to install a newer release of
MIT Scheme, this is possible; see:

http://www.gnu.org/software/mit-scheme.

There are dozens of other implementations of the Scheme programming language which run on
a wide variety of computers. Like MIT Scheme, many of them are free. You can find a list of such
implementations at:

http://swiss.csail.mit.edu/projects/scheme

Be aware that while most Scheme implementations adhere to the R5RS standard, some do not,
and those that do often offer a dizzying array of non-standard features. Throughout this course,
we will assume that MIT Scheme is the default Scheme implementation.

There are two ways to run MIT Scheme on the Linux workstations: within a Unix shell and
within Emacs. These approaches are described below in Sections 2.1 and 2.2.

MIT Scheme has a powerful debugger, but it only has a textual interface, not a graphical
one. Section 2.3 is an introduction to the MIT Scheme debugger. Learning how to use the
debugging tools of MIT Scheme effectively will save you lots of time in CS251, so I
strongly encourage you to invest the time it takes to learn them.

2.1 Running Scheme within a Unix Shell

2.1.1 Entering Scheme

The simplest way to run Scheme on a Linux machine is within a Unix shell window. (See Handout
#3 for details on how to log onto the Linux machines and create a shell window.)

3

To launch Scheme in a shell, execute scheme. This will print a herald on the screen and even-
tually the 1]=> prompt of the Scheme interpreter will appear. Type a simple Scheme expression
after the prompt and hit the return key. The interpreter will evaluate the expression, print out its
value, and give you another prompt.

2.1.2 Exiting Scheme

To terminate your session with the Scheme interpreter, evaluate the expression (exit). Make sure
that you are really done before exiting, since there is no way to get back to your session once you
have exited. (You can always start a new session, but it will not have any of the definitions from
your old session.)

2.1.3 Errors/Debugging

If the interpreter encounters an error when evaluating an expression, it will enter a special read-
eval-print loop (REPL) for debugging. This special REPL will be indicated by a prompt that
begins with something other than 1]=>, e.g. 2 error>. You have two basic options at this point:

1. Ignore the error and return to the top-level REPL. You can do this by typing C-c C-c.1

C-c C-c is an example of an interrupt sequence. Other interrupt sequences are documented
in Section 3.1.2 of the MIT Scheme User’s Manual.

2. Use the debugger to track down the source of the error. See Section 2.3 of this handout for
more information.

2.1.4 Loading Files

It is tedious to type all expressions directly at the Scheme interpreter. It is especially frustrating
to type in a long definition only to notice that you made an error near the beginning and you have
to type it in all over again. In order to reduce your frustration level, it is wise to use a text editor
(e.g. Emacs) to type in all but the simplest Scheme expressions. This way, it is easy to correct
bugs and to save your definitions between different sessions with the Scheme interpreter.

If filename is the name of a file containing Scheme expressions and definitions, evaluating
(load " filename") will evaluate all of the expressions in the file, one by one, as if you had typed
them in by hand. A loaded file can contain expressions that load other files.

By default, load will only display the value of the last expression in the file. If you would like
load to display the values of all of the expressions in the file, you can change the default behavior
by evaluating (set! load-noisily? #t). You can return to the default behavior by evaluating
(set! load-noisily? #f).

2.1.5 Scheme Initialization File

You can customize Scheme to automatically load certain features whenever you start a new Scheme
session. You do this by creating a file named .scheme.init in your home directory and putting
into it whatever Scheme expressions you want evaluated when Scheme starts up. For example, if
you would like file loading to always be noisy, you can include (set! load-noisily? #t) in your
.scheme.init file.

1Notational convention: C-c, pronounced “control C”, is entered by typing the control key (labelled Ctrl on
most keyboards) and the c key at the same time.

4

2.2 Running Scheme in Emacs

You could do all of your Scheme programming using just the techniques outlined in Section 2.1
above. However, you will find yourself constantly swapping attention between the Emacs editor
(where you write your code) and the Scheme interpreter (where you evaluate your code). In
particular, whenever you make a change to your Emacs file, you will have to save the file and
reload it in Scheme.

To reduce the overhead of swapping between Emacs and Scheme, you can run Scheme within
Emacs. There are Emacs commands for starting Scheme, evaluating Scheme expressions, evaluating
Scheme buffers, and so on; these are outlined below. For more information, see Chapter 6 of the
MIT Scheme User’s Manual.

2.2.1 Entering Scheme in Emacs

To start a Scheme interpreter within Emacs, execute the Emacs command M-x run-scheme.2 This
will create an Emacs buffer named *scheme* into which the result of all expression evaluations will
be displayed.

2.2.2 Exiting Scheme in Emacs

You can exit Scheme in Emacs by killing the *scheme* buffer (using C-x k).

2.2.3 Evaluating an Expression

To evaluate a Scheme expression in Emacs, position the cursor after the last character of the
expression and type C-x C-e. The value will appear in the Emacs mini-buffer and also in the
scheme buffer. You can evaluate a Scheme expression within any Emacs buffer that is in Scheme
mode (see below).

2.2.4 Evaluating a Definition

You can evaluate the definition in which the cursor currently resides by typing M-z. This is equiv-
alent to finding the end of the definition and typing C-x C-e.

Whenever you modify a definition, it is wise to let the Scheme interpreter know that you have
done so by evaluating it. It can be confusing when the Scheme definitions in the Emacs buffer do
not reflect the current bindings within the Scheme interpreter. In fact, this is a common source of
problems in CS251. If your program doesn’t seem to be working, it’s always worthwhile to load it
from scratch before doing further debugging.

2.2.5 Evaluating a Buffer

You can evaluate all of the expressions in a buffer by typing M-o. This is equivalent to saving the
buffer into a file and loading that file within Scheme. However, typing M-o is much faster!

2Notational convention: M-x, pronounced “meta x”, is entered by typing the meta key (labelled Alt on PC
keyboards) and the x key at the same time. If you do not have a meta key, instead type the escape key (typically
labelled Esc) followed by the x key.

5

2.2.6 Scheme Mode

An Emacs buffer can be in various modes. Each mode tells the buffer how keystrokes in that buffer
should be interpreted. The most useful mode for editing Scheme code is Scheme mode. You can
tell a buffer to enter Scheme mode by typing M-x scheme-mode. You can tell that a buffer is in
Scheme mode by the appearance of the word Scheme in the status line at the bottom of Emacs.

Whenever you edit a file that ends in .scm, Emacs will automatically put the buffer for that
file into Scheme mode. For this reason, it is wise to use the .scm extension for all of your Scheme
files.

Scheme mode helps you write Scheme code because it understands the formatting conventions
for Scheme code. Like many Emacs modes, it helps you match parentheses by flashing the matching
open parenthesis whenever you type a close parenthesis. Addtionally, Scheme mode helps you put
your code in pretty-printed format. Typing the Tab key will indent the code on that line according
to the Scheme indentation conventions. You should get into the habit of hitting Tab after every
return so that you start typing the next line at the appropriate indentation level. You can format
an entire expression by typing C-M-q3 when the cursor is at the first character of the expression.

Keeping your Scheme expressions indented properly is important for reading and debugging
code. Indenting the code will often highlight that the parenthesis structure of the expression has a
bug. See Section 2.3.1 for more discussion of this point.

2.3 Debugging Programs in MIT Scheme

This section gives a few hints about debugging Scheme programs in MIT Scheme. See Chapter 5
of the MIT Scheme User’s Manual for more information. Please see me for a personal tutorial if
you want to learn more about Scheme debugging. Learning how to use the debugging tools
of MIT Scheme effectively will save you lots of time in CS251, so I strongly encourage
you to invest the time it takes to learn them.

We will explore strategies for debugging Scheme programs in the context of the following buggy
version of the flatten procedure:

(define flatten

(lambda (tree)

(if (null? tree)

’()

(if (atom? tree)

tree

(append (flatten (car (tree))))

(flatten (cdr tree))))))

2.3.1 Indentation

The parenthesis-matching feature of Emacs helps you to balance parenthesis. But it does not help
to make sure that the parentheses are in the right places. Syntactic errors are often caused by
misplaced parentheses. For example, if we evaluate the above definition of flatten, Scheme signals
the following error:

;SYNTAX: if: too many forms ((flatten ...))

3Notational convention: C-M-q, pronounced “control-meta-q”, is entered by typing the control, meta, and q keys
all at the same time. If your keyboard does not have a meta key, first type the escape key, and then type the control

and q keys at the same time.

6

;To continue, call RESTART with an option number:

; (RESTART 1) => Return to read-eval-print level 1.

A useful strategy for checking parenthesization is to use indentation. Typing the Tab key on any
line indents that line according to the Scheme pretty-printing conventions. If you wish to indent a
whole s-expression, move the cursor to the open paren of the s-expression and type C-M-q. In our
example, indentation gives the following result:

(define flatten

(lambda (tree)

(if (null? tree)

’()

(if (atom? tree)

tree

(append (flatten (car (tree))))

(flatten (cdr tree))))))

Note that what was intended to be the second argument to append is instead the fourth subex-
pression of the if expression. Since an if expression must have either two or three subexpressions,
this is a syntactic error.

2.3.2 The stack debugger

Suppose we fix the original defintion of flatten to fix the bug found in Section 2.3.1:

(define flatten

(lambda (tree)

(if (null? tree)

’()

(if (atom? tree)

tree

(append (flatten (car (tree)))

(flatten (cdr tree)))))))

We now have no trouble evaluating the definition, but flatten doesn’t work if we call it on an
argument:

(flatten ’((a b) (c) (d (e))))

;The object ((d (e))) is not applicable.

;To continue, call RESTART with an option number:

; (RESTART 2) => Specify a procedure to use in its place.

; (RESTART 1) => Return to read-eval-print level 1.

If you try this out, you will see that the Scheme level number is now 2, indicating we are in
an error read-eval-print loop. We could debug this example, but a good strategy is to try it on a
simpler example. First, we type C-c C-c to go back to level 1, and then try again:

(flatten ’(a b c))

;The object (c) is not applicable.

;To continue, call RESTART with an option number:

; (RESTART 2) => Specify a procedure to use in its place.

; (RESTART 1) => Return to read-eval-print level 1.

7

It still doesn’t work. OK, let’s debug it. In level 2, we evaluate the (debug) form. This puts
us in Scheme level 3 and gives us access to a stack debugger:

(debug)

There are 9 subproblems on the stack.

Subproblem level: 0 (this is the lowest subproblem level)

Expression (from stack):

(’(c))

There is no current environment.

The execution history for this subproblem contains 1 reduction.

Unfortunately, the information is accessed through a textual interface rather than a graphical one.
Every debugger command is invoked by a single character. Typing ? gives a list of all the commands:

? help, list command letters

A show All bindings in current environment and its ancestors

B move (Back) to next reduction (earlier in time)

C show bindings of identifiers in the Current environment

D move (Down) to the previous subproblem (later in time)

E Enter a read-eval-print loop in the current environment

F move (Forward) to previous reduction (later in time)

G Go to a particular subproblem

H prints a summary (History) of all subproblems

I redisplay the error message Info

J return TO the current subproblem with a value

K continue the program using a standard restart option

L (List expression) pretty print the current expression

M (Frame elements) show the contents of the stack frame, in raw form

O pretty print the procedure that created the current environment

P move to environment that is Parent of current environment

Q Quit (exit debugger)

R print the execution history (Reductions) of the current subproblem level

S move to child of current environment (in current chain)

T print the current subproblem or reduction

U move (Up) to the next subproblem (earlier in time)

V eValuate expression in current environment

W enter environment inspector (Where) on the current environment

X create a read eval print loop in the debugger environment

Y display the current stack frame

Z return FROM the current subproblem with a value

Without a doubt, the most useful debugging command is H, which shows the state of the runtime
stack when the error occurred. In fact, as a habit, I always type H after entering the debugger. In
our example, this gives the following stack trace:

SL# Procedure-name Expression

0 (’(c))

1 flatten (car (tree))

2 flatten (flatten (car (tree)))

3 flatten (append (flatten (car (tree))) (flatten (cdr t ...

4 flatten (append (flatten (car (tree))) (flatten (cdr t ...

8

5 flatten (append (flatten (car (tree))) (flatten (cdr t ...

6 ;compiled code

7 ;compiled code

8 ;compiled code

The stack trace tells us that the error occured in the expression (’(c)) when evaluating the
expression (car (tree)) within the call (flatten (car (tree))), which itself was nested within
several calls to append. Each line represents a subproblem level. By default, the debugger is at
subproblem level 0, but we can go to another level by typing G followed by a number and then a
return. Suppose we go to subproblem level 1:

Subproblem level: 1

Expression (from stack):

(car ###)

subproblem being executed (marked by ###):

(tree)

Environment created by the procedure: FLATTEN

applied to: ((c))

The execution history for this subproblem contains 1 reduction.

We are told that the error occurred within the expression (tree), which appeared within the
context (car (tree)). If we type C, we see a list of the current variable bindings:

Environment created by the procedure: FLATTEN

Depth (relative to initial environment): 0

has bindings:

tree = (c)

So tree is the list (c), and we are trying to apply it as a procedure of zero arguments. This is the
source of our error.

Before we exit the debugger, let’s do a little bit of exploring to get a better sense for the stack.
If we go to subproblem level 5 and type C we get:

Subproblem level: 5

Expression (from stack):

(append (flatten (car (tree))) ###)

subproblem being executed (marked by ###):

(flatten (cdr tree))

Environment created by the procedure: FLATTEN

applied to: ((a b c))

The execution history for this subproblem contains 4 reductions.

Environment created by the procedure: FLATTEN

Depth (relative to initial environment): 0

has bindings:

tree = (a b c)

This stack frame is associated with the evaluation of the body to the top-level call (flatten ’(a b c)).
If we now go to subproblem level 4 and type C we find:

9

Subproblem level: 4

Expression (from stack):

(append (flatten (car (tree))) ###)

subproblem being executed (marked by ###):

(flatten (cdr tree))

Environment created by the procedure: FLATTEN

applied to: ((b c))

The execution history for this subproblem contains 4 reductions.

Environment created by the procedure: FLATTEN

Depth (relative to initial environment): 0

has bindings:

tree = (b c)

This frame is associated with the evaluation of the body of the recursive call (flatten ’(b c)). If
we now type the E command, we enter a Scheme evaluator at level 4 that can evaluate expressions
with the bindings of the stack frame in effect. For example:

;You are now in the environment for this frame.

;Type C-c C-u to return to the debugger.

(car tree)

;Value: b

(cdr tree)

;Value 1: (c)

To leave the level 4 Scheme evaluator, we can type C-c C-u to go up one level to level 3, or
type C-c C-c to get back to level 1. Let’s do the latter and fix our bug:

(define flatten

(lambda (tree)

(if (null? tree)

’()

(if (atom? tree)

tree

(append (flatten (car tree))

(flatten (cdr tree)))))))

;Value: flatten

(flatten ’(a b c))

;The object c, passed as the first argument to cdr, is not the correct type.

;To continue, call RESTART with an option number:

; (RESTART 2) => Specify an argument to use in its place.

; (RESTART 1) => Return to read-eval-print level 1.

Oops! We still have an error. Let’s evaluate (debug) to enter the debugger, followed by H to give
us a stack trace.

(debug)

There are 8 subproblems on the stack.

10

Subproblem level: 0 (this is the lowest subproblem level)

Expression (from stack):

(cdr ’c)

There is no current environment.

The execution history for this subproblem contains 1 reduction.

SL# Procedure-name Expression

0 (cdr ’c)

1 append (append (cdr lst1) lst2)

2 append (cons (car lst1) (append (cdr lst1) lst2))

3 flatten (append (flatten (car tree)) (flatten (cdr tree)))

4 flatten (append (flatten (car tree)) (flatten (cdr tree)))

5 ;compiled code

6 ;compiled code

7 ;compiled code

The problem is that we are trying to take the cdr of the symbol c. Let’s go to subproblem level 1
to find out why:

Subproblem level: 1

Expression (from stack):

(append ### lst2)

subproblem being executed (marked by ###):

(cdr lst1)

Environment created by the procedure: APPEND

applied to: (c ())

The execution history for this subproblem contains 1 reduction.

Environment created by the procedure: APPEND

Depth (relative to initial environment): 0

has bindings:

lst1 = c

lst2 = ()

Aha! We are trying to append a symbol to a list, but append requires two lists as arguments.

2.3.3 Tracing

In Section 2.3.2, we found the where an error occurred, but did not find why it occurred. Why is
append getting a symbol as its first argument? The stack debugger doesn’t show us the history of
the computation, just the current state. To get a better sense for how the computation reached
this point, we would like to see a history of calls to various functions.

In many languages, the way you get this sort of history is by sprinkling print statements
throughout your code in order to track down the source of a bug. Such print statements often
indicate when a particular function is being called, along with its parameters, or when a partic-
ular function returns, along with its return value. While such print statements can greatly aid
debugging, adding them to and removing them from a program is a tedious and error prone process.

11

MIT Scheme has a wonderful procedure tracing facility that greatly simplifies debugging by
making it unnecessary to insert such print statements in common situations. Instead, all one
needs to do to get the effect of adding such print statements is to ”trace” the procedure. This
is done by evaluating the expression (trace prof), where proc is an expression that denotes the
procedure for which you want information printed on every entry and exit to that function.

Simple Tracing Examples Here is a simple example of function tracing. Consider the following
summation function:

(define sum

(lambda (lst)

(if (null? lst)

0

(+ (car lst)

(sum (cdr lst))))))

We can trace the execution of this procedure by evaluating the expression (trace sum). If we now
evaluate (sum ’(1 2 3 4)), Scheme prints out the following information. Note how the name of
traced procedure and its arguments are printed whenever the procedure is invoked, and its name,
arguments, and return value are printed whenever it returns (<==):

[Entering #[compound-procedure 1 sum]

Args: (1 2 3 4)]

[Entering #[compound-procedure 1 sum]

Args: (2 3 4)]

[Entering #[compound-procedure 1 sum]

Args: (3 4)]

[Entering #[compound-procedure 1 sum]

Args: (4)]

[Entering #[compound-procedure 1 sum]

Args: ()]

[0

<== #[compound-procedure 1 sum]

Args: ()]

[4

<== #[compound-procedure 1 sum]

Args: (4)]

[7

<== #[compound-procedure 1 sum]

Args: (3 4)]

[9

<== #[compound-procedure 1 sum]

Args: (2 3 4)]

[10

<== #[compound-procedure 1 sum]

Args: (1 2 3 4)]

;Value: 10

You can trace as many procedures as you want to at one time. For instance, consider the
following two procedures that implement insertion sort:

12

(define insertion-sort

(lambda (lst)

(if (null? lst)

’()

(insert (car lst)

(insertion-sort (cdr lst))))))

(define insert

(lambda (elt sorted-lst)

(if (null? sorted-lst)

(list elt)

(if (< elt (car sorted-lst))

(cons elt sorted-lst)

(cons (car sorted-lst)

(insert elt (cdr sorted-lst)))))))

We can trace both such procedures by evaluating the following:

(trace insertion-sort)

(trace insert)

Below is an example of a sample trace. Study it carefully to make sure you understand how insertion
sort is working.

(insertion-sort ’(3 5 1 4 2))

[Entering #[compound-procedure 2 insertion-sort]

Args: (3 5 1 4 2)]

[Entering #[compound-procedure 2 insertion-sort]

Args: (5 1 4 2)]

[Entering #[compound-procedure 2 insertion-sort]

Args: (1 4 2)]

[Entering #[compound-procedure 2 insertion-sort]

Args: (4 2)]

[Entering #[compound-procedure 2 insertion-sort]

Args: (2)]

[Entering #[compound-procedure 2 insertion-sort]

Args: ()]

[()

<== #[compound-procedure 2 insertion-sort]

Args: ()]

[Entering #[compound-procedure 4 insert]

Args: 2

()]

[(2)

<== #[compound-procedure 4 insert]

Args: 2

()]

[(2)

<== #[compound-procedure 2 insertion-sort]

Args: (2)]

[Entering #[compound-procedure 4 insert]

Args: 4

(2)]

13

[Entering #[compound-procedure 4 insert]

Args: 4

()]

[(4)

<== #[compound-procedure 4 insert]

Args: 4

()]

[(2 4)

<== #[compound-procedure 4 insert]

Args: 4

(2)]

[(2 4)

<== #[compound-procedure 2 insertion-sort]

Args: (4 2)]

[Entering #[compound-procedure 4 insert]

Args: 1

(2 4)]

[(1 2 4)

<== #[compound-procedure 4 insert]

Args: 1

(2 4)]

[(1 2 4)

<== #[compound-procedure 2 insertion-sort]

Args: (1 4 2)]

[Entering #[compound-procedure 4 insert]

Args: 5

(1 2 4)]

[Entering #[compound-procedure 4 insert]

Args: 5

(2 4)]

Args: 5

(4)]

[Entering #[compound-procedure 4 insert]

Args: 5

()]

[(5)

<== #[compound-procedure 4 insert]

Args: 5

()]

[(4 5)

<== #[compound-procedure 4 insert]

Args: 5

(4)]

[(2 4 5)

<== #[compound-procedure 4 insert]

Args: 5

(2 4)]

[(1 2 4 5)

<== #[compound-procedure 4 insert]

Args: 5

(1 2 4)]

[(1 2 4 5)

<== #[compound-procedure 2 insertion-sort]

Args: (5 1 4 2)]

14

[Entering #[compound-procedure 4 insert]

Args: 3

(1 2 4 5)]

[Entering #[compound-procedure 4 insert]

Args: 3

(2 4 5)]

[Entering #[compound-procedure 4 insert]

Args: 3

(4 5)]

[(3 4 5)

<== #[compound-procedure 4 insert]

Args: 3

(4 5)]

[(2 3 4 5)

<== #[compound-procedure 4 insert]

Args: 3

(2 4 5)]

[(1 2 3 4 5)

<== #[compound-procedure 4 insert]

Args: 3

(1 2 4 5)]

[(1 2 3 4 5)

<== #[compound-procedure 2 insertion-sort]

Args: (3 5 1 4 2)]

;Value 5: (1 2 3 4 5)

More Tracing Details Here are a few more helpful notes on tracing:

• To stop tracing a procedure, evaluate (untrace proc), where proc is an expression denoting
the procedure you no longer want to trace. Evaluating (untrace) will untrace all currently
traced procedures.

• If you define a new version of a function, any tracing for the previous version of the function
will no longer be active. You will need to trace the new version of the function.

• Tracing is an excellent way to localize bugs in your program. But it is also a good way to
gain a better understanding for correct code. For instance, if you don’t understand how a
particular function works, trace it and try it out on some example inputs.

• Procedure tracing is a simple form of a sophisticated Scheme debugging feature that allows
arbitrary computations to be performed at procedure entry and exit. See Section 5.4 of the
MIT Scheme User’s Manual for more details.

The flatten Example Now let’s return to the flatten example that started this whole mess.
Assume that we have quit the stack debugger, and will now use Scheme’s trace procedure to
print out information every time the Scheme interpreter enters and exits the flatten and append

procedures:

(trace flatten)

;No value

(trace append)

;No value

15

(flatten ’(a b c))

[Entering #[compound-procedure 2 flatten]

Args: (a b c)]

[Entering #[compound-procedure 2 flatten]

Args: (b c)]

[Entering #[compound-procedure 2 flatten]

Args: (c)]

[Entering #[compound-procedure 2 flatten]

Args: ()]

[()

<== #[compound-procedure 2 flatten]

Args: ()]

[Entering #[compound-procedure 2 flatten]

Args: c]

[c

<== #[compound-procedure 2 flatten]

Args: c]

[Entering #[compound-procedure 3 append]

Args: c

()]

;The object c, passed as the first argument to cdr, is not the correct type.

;To continue, call RESTART with an option number:

; ... <other error notices omitted>

The trace shows us that the problem is that (flatten ’c) returns c rather than a singleton
list whose sole element is c. We can fix this bug, and try again:

(define flatten

(lambda (tree)

(if (null? tree)

’()

(if (atom? tree)

(list tree)

(append (flatten (car tree))

(flatten (cdr tree)))))))

;Value: flatten

(flatten ’(a b c))

[Entering #[compound-procedure 3 append]

Args: (c)

()]

....

Oops, we forgot to turn off tracing via untrace! Let’s turn it off and try again:

(untrace)

;No value

(flatten ’(a b c))

;Value 5: (a b c)

(flatten ’((a b) (c) (d (e))))

;Value 6: (a b c d e)

Hey, it works!

16

2.3.4 Environment Inspector

In addition to the stack debugger, there is an environment inspector. Suppose we define test and
test1 as follows:

(define test

(lambda (a)

(lambda (b)

(lambda (c)

(+ a (* b c))))))

;Value: test

(define test1 ((test 1) 2))

;Value: test1

If we print the definition of test1, we don’t know what the values of the free variables a and b are:

(pp test1)

(lambda (c)

(+ a (* b c)))

We can use the environment inspector to find this information. The environment inspected is
invoked via where:

(where test1)

Environment created by a LAMBDA special form

Depth (relative to initial environment): 0

has bindings:

b = 2

Here are the commands understood by the environment debugger:

? help, list command letters

A show All bindings in current environment and its ancestors

C show bindings of identifiers in the Current environment

E Enter a read-eval-print loop in the current environment

O pretty print the procedure that created the current environment

P move to environment that is Parent of current environment

Q Quit (exit environment inspector)

S move to child of current environment (in current chain)

V eValuate expression in current environment

W enter environment inspector (Where) on the current environment

Typing C shows us the values of the (non-top-level) free variables in test1:

--

Environment created by a LAMBDA special form

Depth (relative to initial environment): 0

has bindings:

b = 2

--

17

Environment created by the procedure: TEST

Depth (relative to initial environment): 1

has bindings:

a = 1

--

Environment named: (user)

Depth (relative to initial environment): 2

--

Environment named: ()

Depth (relative to initial environment): 3

12

18

