
CS251 Programming Languages Handout # 31

Prof. Lyn Turbak March 16, 2007

Wellesley College Revised March 28, 2007

Extending Bindex

Revisions: Mar 28 : In sigma examples of Fig. 1, fixed several ks to be js.

Programming language designers often want to experiment with a language by modifying a
feature or adding new features. Here, we study what is involved in such experimentation in the
context of some changes to the Bindex language.

1 Call-by-Value vs. Call-by-Name

Reconsider the Bindex substitution model evaluation clause for bind:

and eval exp =

match exp with
...

| Bind(name,defn,body) ->

eval (subst1 (Lit (eval defn)) name body)

This clause evaluates the definition expressions defn to an integer before substituting the integer
for the bound name in the body. This strategy is called call-by-value evaluation because each
definition expression must first be evaluated to a value before any other evaluation can take place.
For example, in the expression

(bind c (/ 5 0) 17)

the call-by-value strategy results in a divide-by-zero error even though the c is never used in the
body expression.
There is an alternative strategy, call-by-name evaluation, in which the unevaluated definition

expression is substituted for the bound name. It is easy to modify the Bindex substitution-model
evaluator to express call-by-name evaluation:

and eval exp =

match exp with
...

| Bind(name,defn,body) ->

(* call-by-name evaluation of bind expression *)

eval (subst1 defn name body)

With this interpreter, the expression (bind c (/ 5 0) 17) evaluates to 17 without signaling an
error, because (/ 5 0) is never evaluated. TheAlgol60 language was an influential early language
that used call-by-name evaluation.
It is also possible to modify the environment-model evaluator for a language like Bindex to

express call-by-name evaluation. We will explore this later in the semester.
In call-by-name, the number of times a definition expression is evaluated is the number of times

it appears in the body. For instance, in

(bind a (+ 1 2) (* a a))

the addition (+ 1 2) will be evaluated twice in call-by-name but only once in call-by-value. For
reasons of efficiency, most modern languages employ the call-by-value strategy. An important
exception is Haskell, which uses a modified version of call-by-name known as call-by-need.
Call-by-need evaluates a definition expression at most once, but doesn’t evaluate it if it is not used.
Will will study call-by-need evaluation later in the semester.

1

2 sigma: A Summation Construct

We now consider extending Bindex with the following construct:

(sigma Ivar Elo Ehi Ebody)

Assume that Ivar is a variable name, Elo and Ehi are expressions denoting integers that are
not in the scope of Ivar , and Ebody is an expression that is in the scope of var. Returns the
sum of Ebody evaluated at all values of the index variable Ivar ranging from the integer value
of Elo up to the integer value of Ehi , inclusive. This sum would be expressed in traditional
mathematical summation notation as:

Ehi∑

Ivar=Elo

Ebody .

If the value of Elo is greater than that of Ehi , the sum is 0.

Fig. 1 show some examples using sigma.

Mathematical Bindex Value

Notation Notation

∑7
i=3 i (sigma i 3 7 i) 3 + 4 + 5 + 6 + 7 = 25

∑2∗3
j=1+2 j2

(sigma j (+ 1 2)

(* 2 3)

(* j j))

32 + 42 + 52 + 62 = 86

∑1
j=5 j2 (sigma j 5 1 (* j j)) 0

∑5
i=2

∑4
j=i i · j

(sigma i 2 5

(sigma j i 4

(* i j)))

2 · 2 + 2 · 3 + 2 · 4 + 3 · 3 + 3 · 4 + 4 · 4 = 55

∑
5

j=1
j∑

i=
∑

3

k=1
k2

i

(sigma i (sigma k 1 3

(* k k))

(sigma j 1 5 j)

i)

1+2+3+4+5∑

i=(12+22+32)

=

15∑

i=14

= 14+15 = 29

Figure 1: Examples of the sigma construct.

What changes must be made to the Bindex implementation in order to add the sigma con-
struct? We consider a minimal set of changes, ignoring some details (such as extending the fold
and uniquify functions) that would be needed in a complete implementation.

1. Extend the exp data type to include sigma:

and exp = . . .

| Sigma of var * exp * exp * exp (* name * lo * hi * body *)

2

2. Extend sexpToExp to parse sigma:

and sexpToExp sexp =

match sexp with
...

| Seq [Sym "sigma"; Sym name; lox; hix; bodyx] ->

Sigma (name, sexpToExp lox, sexpToExp hix, sexpToExp bodyx)

3. Extend expToSexp to unparse sigma:

and expToSexp e =

match e with
...

| Sigma(name,lo,hi,body) ->

Seq [Sym "sigma"; Sym name; expToSexp lo; expToSexp hi; expToSexp body]

4. Extend freeVarsExp to calculate the free variables of a sigma expression (necessary in order
for varCheck to work):

and freeVarsExp e =

match e with
...

| Sigma(name,lo,hi,body) ->

S.union (S.diff (freeVarsExp body)

(S.singleton name))

(S.union (freeVarsExp lo)

(freeVarsExp hi))

5. Extend the environment model eval function to handle sigma:

and eval exp env =

match exp with
...

| Sigma(name,lo,hi,body) ->

foldr (+) 0

(map (fun i -> eval body (Env.bind name i env))

(range (eval lo env) (eval hi env)))

There are many ways to perform the summation, but range, map, and foldr are an elegant
approach. Note how the evaluation of the sigma body expression at a particular index variable
i is expressed via:

(fun i -> eval body (Env.bind name i env))

Only body is evaluated in an extended environment, because it is the only subexpression in
the scope of the sigma-bound name.

6. Extend the subst function to handle sigma expressions (necessary for the substitution model):

let rec subst exp env =

match exp with
...

| Sigma(name,lo,hi,body) ->

let name’ = StringUtils.fresh name in

Sigma(name’,

subst lo env,

subst hi env,

subst (rename1 name name’ body) env)

3

7. Extend the substitution model eval function to handle sigma:

and eval exp =

match exp with
...

| Sigma(name,lo,hi,body) ->

foldr (+) 0

(map (fun i -> eval (subst1 (Lit i) name body))

(range (eval lo) (eval hi)))

This is similar to the environment model, except that substitution is use to associate i with
the index variable in the body expression.

3 Multiple Bindings: bindpar and bindseq

To explore multiple bindings in Bindex, we consider extending Bindex with two constructs that
allow multiple bindings:

1. (bindpar ((Iname1
Edefn1

) . . . (Inamen
Edefn

n
)) Ebody) binds the names Iname1

. . . Inamen

to the values of the expressions Edefn1
. . . Edefn

n
, where these values are determined in parallel:

all definition expressions are evaluated in the same environment in which the bindpar itself
is evaluated. The result of the bindpar is the result of evaluating Ebody in an environment
that extends the current environment with bindings between all the names and the values of
their respective definitions.

2. (bindseq ((Iname1
Edefn1

) . . . (Inamen
Edefn

n
)) Ebody) binds the names Iname1

. . . Inamen

to the values of the expressions Edefn1
. . . Edefn

n
, where these values are determined sequen-

tially: each definition expression is evaluated in the environment of the bindseq extended
with bindings for the names that appear in the bindings of the bindseq that precede it. The
result of the bindseq is the result of evaluating Ebody in an environment that extends the
current environment with bindings between all the names and the values of their respective
definitions.

As an example of the difference between these two binding constructs, consider invoking the
following program on the values 10 and 2:

(bindex (a b) ; a = 10, b = 2

(bindpar ((a (/ a b)) ; (/ 10 2) = 5

(b (- a b))) ; (- 10 2) = 8

(bindpar ((a (* a b)) ; (* 5 8) = 40

(b (+ a b))) ; (+ 5 8) = 13

(+ a b)))) ; (+ 40 13) = 53

As indicated by the annotations in the comments, this invocation yields 53 as a result. If we change
each bindpar to a bindseq, the result of invoking the program on the same arguments is 33:

(bindex (a b) ; a = 10, b = 2

(bindseq ((a (/ a b)) ; (/ 10 2) = 5

(b (- a b))) ; (- 5 2) = 3

(bindseq ((a (* a b)) ; (* 5 3) = 15

(b (+ a b))) ; (+ 15 3) = 18

(+ a b)))) ; (+ 15 18) = 33

Many languages have constructs analogous to bindpar and bindseq. For example, in Ocaml,
parallel binding is expressed via a let followed by any number of ands, while sequential binding is
expressed by a sequence of lets:

4

let parTest a b =

let a = a/b

and b = a-b

in let a = a*b

and b = a+b

in a+b;;

val parTest : int -> int -> int = <fun>

parTest 10 2;;

- : int = 53

let seqTest a b =

let a = a/b in

let b = a-b in

let a = a*b in

let b = a+b in

a+b;;

val seqTest : int -> int -> int = <fun>

seqTest 10 2;;

- : int = 33

In the Scheme programming language, let is a parallel binding construct but let* is a sequential
binding construct:

(define (par-test a b)

(let ((a (/ a b))

(b (- a b)))

(let ((a (* a b))

(b (+ a b)))

(+ a b))))

;Value: par-test

(par-test 10 2)

;Value: 53

(define (seq-test a b)

(let* ((a (/ a b))

(b (- a b)))

(let* ((a (* a b))

(b (+ a b)))

(+ a b))))

;Value: seq-test

(seq-test 10 2)

;Value: 33

We now study the changes we need to make to the Bindex language implementation in order
to add bindpar and bindseq. As in the example of extending Bindex with a sigma construct,
there are seven changes we need to make:

1. Extend the exp data type with constructors for bindpar and bindseq.

2. Extend the sexpToExp function to parse the new constructs.

3. Extend the expToSexp function to unparse the new constructs.

4. Extend the freeVarsExp function to determine the free variables of the new constructs.

5. Extend the environment-model eval function handle the the new constructs.

5

6. Extend the subst function to perform substitution on the new constructs.

7. Extend the substitution-model eval function handle the the new constructs.

3.1 Extending the exp Data Type

Our first step is to extend the exp data type to include summands for bindpar and bindseq:

and exp =
...

| Bindpar of var list * exp list * exp (* parallel binding of names to defns in body *)

| Bindseq of var list * exp list * exp (* sequential binding of names to defns in body *)

We could represent the bindings as a list of var/exp pairs, but we instead choose to unzip these
into a var list and an exp list because the unzipped form is more convenient for most processing
of these expressions. We may always assume that these lists have the same length.

3.2 Parsing

In order to parse the new binding expressions, we must extend sexpToExp. We begin by defining
some auxiliary functions for parsing bindings. The parseBinding function parses bindings whose
s-expression form is (Iname Edefn):

(* val parseBinding : Sexp.sexp -> (string, exp) *)

let rec parseBinding sexp =

match sexp with

Seq [Sym name; defn] -> (name, sexpToExp defn)

| _ -> raise (SyntaxError ("parseBinding -- invalid binding form: "

^ (sexpToString sexp)))

The parseBindings function parses lists of bindings whose s-expression form is ((I1 E1) . . . (In En)):

(* val parseBindings : Sexp.sexp -> (strings, exps) *)

and parseBindings sexp =

match sexp with

Seq bindingsx -> unzip (map parseBinding bindingsx)

| _ -> raise (SyntaxError ("parseBindings -- invalid bindings list: "

^ (sexpToString sexp)))

We will assume that the names bound in a bindpar or bindseq are distinct, but parseBindings
does not verify this assumption. It would be straightforward to extend it verify that that the
returned list of strings does not contain any duplicates.
Now we are ready to extend sexpToBinding:

and sexpToExp sexp =

match sexp with
...

| Seq [Sym "bindpar"; bindingsx; bodyx] ->

let (names,defns) = parseBindings bindingsx in

Bindpar(names, defns, sexpToExp bodyx)

| Seq [Sym "bindseq"; bindingsx; bodyx] ->

let (names,defns) = parseBindings bindingsx in

Bindseq(names, defns, sexpToExp bodyx)

A subtle point is that the above clauses must come before the clause for processing binary
applications:

6

| Seq [Sym p; rand1x; rand2x] ->

BinApp(stringToBinop p, sexpToExp rand1x, sexpToExp rand2x)

Why? Because otherwise the pattern Seq [Sym p; rand1x; rand2x] will match both the bindpar
and bindseq forms and an exception will be raised by stringToBinop indicating that these are
not valid binops!

3.3 Unparsing

In order to unparse the new binding expressions, we must extend expToSexp. Unparsing is more
straightforward than parsing:

and expToSexp e =

match e with
...

| Bindpar(ns,ds,b) -> Seq [Sym "bindpar";

Seq (map2 (fun n d -> Seq[Sym n; expToSexp d]) ns ds);

expToSexp b]

| Bindseq(ns,ds,b) -> Seq [Sym "bindseq";

Seq (map2 (fun n d -> Seq[Sym n; expToSexp d]) ns ds);

expToSexp b]

3.4 Free Variables

In the expression (bindpar ((Iname1
Edefn1

). . . (Inamen
Edefn

n
)) Ebody), only the body expres-

sion Ebody is in the scope of the names Iname1
. . . Inamen

. So the free variables of this expression are
the free variables of all the Edefn expressions unioned with the difference of the Ebody expression
and all the Iname identifiers. This calculation is expressed as a clause in the freeVarsExp function
as follows:

and freeVarsExp e =

match e with
...

| Bindpar(names,defns,body) ->

S.union (freeVarsExps defns)

(S.diff (freeVarsExp body)

(listToSet names))

If the extended freeVarsExp is in the module BindexPlus, we can test it as follows:

open BindexPlus;;

setToList

(freeVarsExp

(stringToExp

"(bindpar ((a (+ d e))

(b (- a f))

(c (* b g)))

(+ (* a b) (/ c d)))"));;

- : BindexPlus.S.elt list = ["a"; "b"; "d"; "e"; "f"; "g"]

For (bindseq ((Iname1
Edefn1

) . . . (Inamen
Edefnn

)) Ebody), the calculation of free variables
is more complex because the scope of each variable Inamei

includes the definition expressions Edefn
i+1

. . . Edefn
n
as well as Ebody . So the bound variable of a binding needs to be subtracted off from

the free variables of the definitions of subsequent bindings. This can be expressed succinctly in
freeVarsExp clause using foldr2 as follows:

7

| Bindseq(names,defns,body) ->

foldr2 (fun n d fvs ->

S.union (freeVarsExp d)

(S.diff fvs (S.singleton n)))

(freeVarsExp body)

names

defns

For example:

setToList

(freeVarsExp

(stringToExp

"(bindseq ((a (+ d e))

(b (- a f))

(c (* b g)))

(+ (* a b) (/ c d)))"));;

- : BindexPlus.S.elt list = ["d"; "e"; "f"; "g"]

3.5 Environment-Model Interpreter

In the environment model, we can extend the eval function to handle bindpar by using map to
evaluate all definition expressions in parallel and then using Env.bindAll to extend the current
environment with bindings that associate the resulting values to the corresponding variables names:

and eval exp env =

match exp with
...

| Bindpar(names,defns,body) ->

eval body (Env.bindAll names (map ((flip eval) env) defns) env)

The sequential nature of bindseq makes it more challenging to implement its evaluation. We
can use foldl2 to start with the initial environment env and incrementally build a sequence of
environments that reflect the contribution of each binding.

| Bindseq(names,defns,body) ->

eval body (foldl2 env

(fun e name defn -> Env.bind name (eval defn e) e)

names

defns)

The current definition expression defn is evaluated in the extended-environment-so-far e, and its
value is bound to the current variable name name in e to make the next environment. The bindseq
expression returns the result of evaluating the body expression body in the environment that results
from processing all the bindings.
The form of the eval clause for bindseq encourages thinking about other meanings for binding

constructs that can be obtained by small tweaks to the clause:

• What if foldl2 is changed to foldr2?

• What if the e in (eval defn e) is changed to env (the parameter of eval)?

• What if the e in Env.bind . . . e is changed to env?

There are eight possible permutations of these possibilities. Which correspond to the meaning of
bindpar?

8

3.6 Substitution

Before we can extend the substitution-model interpreter, we must first extend the subst function
to handle bindpar and bindseq. Recall that to prevent variable capture, the substitution function
gives fresh names to all bound variables before performing substitution on the subexpressions. This
is straightforward in the case of bindpar, because all the renamings can be performed in parallel:

(* val subst : exp -> exp Env.env -> exp *)

let rec subst exp env =

match exp with
...

| Bindpar(names,defns,body) ->

let names’ = map StringUtils.fresh names in

Bindpar(names’,

map ((flip subst) env) defns,

subst (renameAll names names’ body) env)

(* or subst body (bindAll names names’ env) *)

For example:

(* make senv, a sample substitution environment *)

let senv = Env.make ["a"; "b"; "c"; "d"]

[BinApp(Add, Var "a", Var "b");

BinApp(Sub, Var "a", Var "b");

BinApp(Mul, Var "a", Var "b");

BinApp(Div, Var "a", Var "b")];;

val senv : BindexPlus.exp Env.env = <abstr>

StringUtils.print

(expToString

(subst (stringToExp

"(bindpar ((a (+ d e))

(b (- a f))

(c (* b g)))

(+ (* a b) (/ c d)))")

senv));;

(bindpar ((a.2 (+ (/ a b) e))

(b.1 (- (+ a b) f))

(c.0 (* (- a b) g)))

(+ (* a.2 b.1) (/ c.0 (/ a b)))

)- : unit = ()

Renaming the bound variables in bindseq is a fair bit trickier, because we must accurately
model the fact that each variable name declared by bindseq is bound in the following definition
expressions as well as the body expression. We can express this process via the following clause:

| Bindseq(names,defns,body) ->

let (names’,defns’,body’) = substBindseq (zip (names,defns)) body env

in Bindseq(names’,defns’,body’)

where substBindseq is the following recursive function:

9

and substBindseq bindings body env =

match bindings with

[] -> ([], [], subst body env)

| ((name,defn):: bindings’) ->

let name’ = StringUtils.fresh name in

let (names’,defns’,body’) =

substBindseq bindings’ body (Env.bind name (Var name’) env)

in (name’::names’, (subst defn env)::defns’, body’)

substBindseq processes each binding by extending the current environment with a renaming of
the binding’s name to a fresh name. It also uses the current environment to perform renaming in
the definition of the current binding. This process could also be express via foldl2 (try it, as an
exercise), but the recursive version may be easier to understand.
Here is an example of substituting into a bindseq expression, using the sample substitution

environment senv from above:

StringUtils.print

(expToString

(subst (stringToExp

"(bindseq ((a (+ d e))

(b (- a f))

(c (* b g)))

(+ (* a b) (/ c d)))")

senv));;

(bindseq ((a.3 (+ (/ a b) e))

(b.4 (- a.3 f))

(c.5 (* b.4 g)))

(+ (* a.3 b.4) (/ c.5 (/ a b)))

)- : unit = ()

3.7 Substitution-Model Interpreter

Now we’re ready to tackle evaluation in the substitution model. As to be expected, evaluating
bindpar is easier than bindseq:

and eval exp =

match exp with
...

| Bindpar(names,defns,body) ->

eval (substAll (map (fun defn -> Lit (eval defn)) defns)

names

body)

| Bindseq(names,defns,body) -> evalBindseq (zip (names,defns)) body

where evalBindseq is the following auxiliary function:

and evalBindseq names defns body =

match (names,defns) with

([],[]) -> eval body

| (n::names’,d::defns’) ->

let sub = subst1 (Lit (eval d)) n in

evalBindseq names’ (map sub defns’) (sub body)

| _ -> raise (EvalError("shouldn’t happen"))

In the bindpar clause, eval is mapped over the definitions to evaluate them in parallel and
substAll simultaneously substitutes these values for the variable names in the body. Evaluat-
ing bindseq is expressed in terms of the recursive evalBindseq function, which performs the
substitution of a binding value for a binding name on all following definitions as well as the body.

10

