
You Can Do More If You’re Lazy!
Handout #48

CS251 Lecture 38
May 8, 2007

Franklyn Turbak

Wellesley College

You Can Do More If You’re Lazy, CS251 Spring ’07 – p.1/23

Overview of Today’s Lecture

A quick introduction to Haskell, a language with lazy
parameter-passing and data structures.

Modularity problems involving lists, and their solution
with lazy lists in Haskell

Lazy trees

Lazy data in other languages

You Can Do More If You’re Lazy, CS251 Spring ’07 – p.2/23



Sample Haskell Expressions
Prelude> 2*(3+4)

14

Prelude> head [1,2,3,4]

1

Prelude> tail [1,2,3,4]

[2,3,4]

Prelude> map (2*) [1,2,3,4]

[2,4,6,8]

Prelude> foldr (+) 0 [1,2,3,4]

10

Prelude> take 2 [10,20,30,40,50]

[10,20]

Prelude> drop 2 [10,20,30,40,50]

[30,40,50]

You Can Do More If You’re Lazy, CS251 Spring ’07 – p.3/23

More Haskell Expressions
Prelude> fst (1,2)

1

Prelude> snd (1,2)

2

Prelude> zip [1,2,3] [10,20,30,40]

[(1,10),(2,20),(3,30)]

Prelude> unzip [(1,10),(2,20),(3,30)]

([1,2,3],[10,20,30])

Prelude> (\ x -> x*x) (1+2)

9

Prelude> (\ x y -> x*x) (1+2) (3/0) -- illustrates laziness

9

Prelude> (\ x y -> x*x) (3/0) (1+2)

Program error: primDivDouble 3.0 0.0

You Can Do More If You’re Lazy, CS251 Spring ’07 – p.4/23



Haskell Types
Prelude> :type map

map :: (a -> b) -> [a] -> [b]

Prelude> :type foldr

foldr :: (a -> b -> b) -> b -> [a] -> bw2

Prelude> :type zip

zip :: [a] -> [b] -> [(a,b)]

Prelude> :type unzip

unzip :: [(a,b)] -> ([a],[b])

Prelude> :type "foo"

"foo" :: String

Prelude> :type "foo" == "bar"

"foo" == "bar" :: Bool

You Can Do More If You’re Lazy, CS251 Spring ’07 – p.5/23

Qualified Types in Haskell
Prelude> :type 1+2

1 + 2 :: Num a => a

Prelude> :type [1,2,3]

[1,2,3] :: Num a => [a]

Prelude> :type 1 == 2

1 == 2 :: Num a => Bool

Prelude> :type \ x -> x*x

\ x -> x * x :: Num a => a -> a

You Can Do More If You’re Lazy, CS251 Spring ’07 – p.6/23



Haskell Definitions
In HUGS, definitions must be in a file, not a top-level!
a = 2 + 3 -- declare variable a

sq = \ x -> x * x -- sugared form: sq x = x * x

fact 0 = 1 -- recursive factorial

fact n = n * fact (n-1)

factIter n = loop n 1 -- iterative factorial

where loop 0 ans = ans

loop num ans = loop (num-1) (num*ans)

isEven 0 = True -- Mutually recursive functions isEven and isOdd

isEven m = isOdd (m - 1)

isOdd 0 = False

isOdd n = isEven (n - 1)

mymap f [] = []

mymap f (x:xs) = (f x):(mymap f xs)

You Can Do More If You’re Lazy, CS251 Spring ’07 – p.7/23

A Modularity Problem
Consider infinite sequences of integers, such as:

powers of 2: 1, 2, 4, 8, 16, 32, 64, ...

factorials: 1, 1, 2, 6, 24, 120, 720, ...

Fibonacci numbers: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...

primes: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 ...

Suppose we want answers to questions like the following:

What are the first n elements?

What is the first element greater than 100?

What is the (0-based) index of the first element greater than 100?

What is the first consecutive pair whose difference is more than 25?

What is the least index i for which the sum of elements 0 through i is
more than 1000?

Challenge: can we answer these questions in a modular way?
You Can Do More If You’re Lazy, CS251 Spring ’07 – p.8/23



Non-Modular Haskell Solutions
-- returns list of first n Fibonacci numbers

fibsPrefix :: Integer -> [Integer]

fibsPrefix num = gen 0 0 1

where gen n a b =

if n >= num then []

else a : (gen (n + 1) b (a + b))

-- returns least Fibonacci number greater than lim

leastFibGt :: Integer -> Integer

leastFibGt lim = least 0 1

where least a b = if a > lim then a

else least b (a + b)))

-- returns (0-based) index i such that first i Fibonacci

-- numbers have a sum greater than lim

fibSumIndex :: Integer -> Integer

fibSumIndex lim = index 0 0 0 1

where index i sum a b =

if sum > lim then i

else index (i+1) (sum+a) b (a + b)

You Can Do More If You’re Lazy, CS251 Spring ’07 – p.9/23

A More Modular Approach: Infinite Lists

Idea: Separate the generation of the sequence elements from subsequent
processing. Since we don know how many elements we need, generate
all of them — lazily !

nats = genNats 0 where genNats n = n : genNats (n + 1)

-- Can also be written: nats = [0..]

poss = tail nats -- the positive integers

-- Can also be written: poss = [1..]

powers n = genPowers 1

where genPowers x = x : (genPowers (n * x))

facts = genFacts 1 1

where genFacts ans n = ans : (genFacts (n * ans) (n + 1))

fibs = genFibs 0 1

where genFibs a b = a : (genFibs b (a + b))

You Can Do More If You’re Lazy, CS251 Spring ’07 – p.10/23



Processing Infinite Lists
Note: Assume the following functions are invoked only on infinite lists.
Then we can ignore the base case of an empty list! Each function could
be extended to handle the empty list as well.

-- Returns a list of the first n elements of a given list.

-- (Note: the take function is part of standard Haskell)

take n (x:xs) = if (n == 0) then [] else x : (take (n-1) xs)

-- Returns first element satisfying predicate p

firstElem p (x:xs) = if (p x) then x else firstElem p xs

-- Returns first contiguous pair satisfying predicate p

firstPair p (x:y:zs) =

if (p(x,y)) then (x,y) else firstPair p (y:zs)

-- Returns (0-based) index of first elt satisfying pred p

indexOf p xs = ind 0 xs

where ind i (x:xs) =

if (p x) then i else (ind (i+1) xs)

You Can Do More If You’re Lazy, CS251 Spring ’07 – p.11/23

Modular Infinite List Processing Examples

take 10 fibs

firstElem (\ x -> x > 100) (powers 2)

indexOf (\ x -> x > 1000) facts

firstPair (\ (x,y) -> (y - x) > 25) fibs

You Can Do More If You’re Lazy, CS251 Spring ’07 – p.12/23



Scanning
Scanning accumulates partial results of foldl into a list.

scanl :: (a -> b -> a) -> a -> [b] -> [a]

scanl f ans (x:xs) = ans : scanl f (f ans x) xs)

scanl (+) 0 (powers 2) -- be careful of initial zero!

-- alternative definition of facts

facts = scanl (*) 1 poss

-- Like scanl, but uses first elt as initial answer

scanl1 :: (a -> a -> a) -> [a] -> [a]

scanl1 f (x:xs) = scanl f x xs

indexOf (\ s -> s > 1000) (scanl1 (+) fibs)

You Can Do More If You’re Lazy, CS251 Spring ’07 – p.13/23

Higher-order Infinite List Generation
iterate :: (a -> a) -> a -> [a]

iterate f x = x : iterate f (f x)

-- another way to generate the nats

nats = iterate (1 +) 0

iterate2 :: (a -> a -> a) -> a -> a -> [a]

iterate2 f x1 x2 = x1 : iterate2 f x2 (f x1 x2)

-- another way to generate the fibs

fibs = iterate2 (+) 0 1

iteratei :: (Integer -> a -> a) -> Integer -> a -> [a]

iteratei f i x = x : iteratei f (i + 1) (f i x)

-- yet another way to generate the facts

facts = iteratei (*) 1 1

You Can Do More If You’re Lazy, CS251 Spring ’07 – p.14/23



Cyclic Definitions of Infinite Lists
ones = 1 : ones

-- cyclic definition of nats

nats = 0 : (map (1 +) nats

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]

zipWith f (x:xs) (y:ys) = (f x y) : (zipWith f xs ys)

-- another cyclic definition of nats

nats = 0 : (zipWith (+) ones nats)

-- cyclic definition of facts

facts = 1 : (zipWith (*) poss facts)

-- cyclic definition of fibs

fibs = 0 : 1 : (zipWith (+) fibs (tail fibs)

You Can Do More If You’re Lazy, CS251 Spring ’07 – p.15/23

Generating Primes
Idea: use the Sieve of Eratosthenes

sieve (x:xs) =

x : (sieve (filter (\ y -> (rem y x) /= 0) xs))

primes = sieve (tail (tail nats))

-- start sieving at 2

Not only does this give an infinite list of primes, it does so efficiently

by avoiding unnecessary divisions .

For more examples of lazy lists in Haskell , see Chapter 17 of

Simon Thompson book Haskell : The Craft of Functional

Programming.

You Can Do More If You’re Lazy, CS251 Spring ’07 – p.16/23



Lazy Trees
Can use laziness to perform a two-pass tree walk in a single pass:

data Tree a = Leaf | Node (Tree a) a (Tree a) deriving Show

addMax tr = tr’

where (tr’, m) = walk tr

walk Leaf = (Leaf, 0)

walk (Node l n r) = (Node l’ (n + m) r’, max3 n ml mr)

where (l’,ml) = walk l

(r’,mr) = walk r

max3 a b c = max a (max b c)

t = (Node (Node Leaf 1 (Node Leaf 7 Leaf)) 5 (Node Leaf 4 Leaf))

-- AddMax> addMax t

-- Node (Node Leaf 8 (Node Leaf 14 Leaf)) 12 (Node Leaf 11 Leaf)

See Hughes paper Functional Programming Matters for compelling
lazy game tree example.

You Can Do More If You’re Lazy, CS251 Spring ’07 – p.17/23

Streams: Lazy Lists for Scheme and Hoilec

Scheme Lists Scheme Streams Hoilec Lists Hoilec Streams

cons cons-stream prep sprep

car head head shead

cdr tail tail stail

’() the-empty-stream #e (sempty)

null? null-stream empty? sempty?

Note: Scheme and Hoilec streams are lazy only in their tails, not in
their heads!

You Can Do More If You’re Lazy, CS251 Spring ’07 – p.18/23



Hoilec Streams
(sprep Ehead Etail) returns a (potentially infinite) stream

whose head is the value of Ehead and whose tail is the value of

Etail . The evaluation of Etail is delayed until it is needed.

(shead Estream) returns the head element of the stream value

of Estream .

(stail Estream) returns the tail element of the stream value

of Estream . This forces the computation of the delayed tail

expression.

sempty returns the empty stream.

(sempty? Estream) returns #t if Estream is the empty stream

and #f otherwise.

You Can Do More If You’re Lazy, CS251 Spring ’07 – p.19/23

Hoilec Stream Examples I
;; Generate stream of integers starting with n

(def ints-from

(fun (n)

(sprep (ints-from (+ n 1))))) ; No base case!

;; Converts first n elements of infinite stream to a list

(def (sprefix n stream)

(if (= n 0)

#e

(prep (shead stream)

(sprefix (- n 1) (stail stream)))))

(def ones (sprep 1 ones))

(def (smap f stream)

(if (sempty? stream)

stream

(sprep (f (shead stream)) (smap f (stail stream)))))

(def nats (sprep 0 (smap (fun (x) (+ x 1)) nats)))

You Can Do More If You’re Lazy, CS251 Spring ’07 – p.20/23



Scheme Stream Examples II
(def smap2

(fun (f str1 str2)

(sprep (f (shead str1) (shead str2))

(smap2 f (stail str1) (stail str2)))))

(def fibs

(sprep 0

(sprep 1

(smap2 (fun (x y) (+ x y))

fibs

(stail fibs)))))

Can similarly translate other lazy list examples from Haskell to Hoilec
and Scheme

See Section 3.5 of Structure and Interpretation of Computer
Programs (SICP) for more Scheme stream examples.

You Can Do More If You’re Lazy, CS251 Spring ’07 – p.21/23

Implementing Lazy Data in Strict Languages
Use memoizing promises to implement lazy lists in Hoilec:
(delay E) desugars to (make-promise (fun () E))

(def (force promise) (promise))

(sprep E1 E2) desugars to (list E1 (delay E2))

(define (shead stream) (nth 1 stream))

(define (stail stream) (force (nth 2 stream)))

(define (sempty) #e)

(define (sempty? stream) (empty? stream))

Can generalize this idea to handle infinite trees.

Can similarly implement lazy lists in OCaml.

Lazy data is very helpful, but sometimes need even more laziness
(e.g. translating addMax example to Scheme or OCaml).

You Can Do More If You’re Lazy, CS251 Spring ’07 – p.22/23



Java Iterators
Like streams, Java’s iterators can be conceptually infinite. For example:

public class FibIterator implements Iterator<Integer> {

private int a, b;

public FibIterator () { a = 0; b = 1; }

public boolean hasNext () { return true; }

public Integer next () {

int old_a = a; a = b; b = old_a + b;

return new Integer(old_a);} // wrap int to satisfy next() spec

public void remove () { ... ignore this ... }

}

Unlike streams, enumerations are not persistent ; can’t hold on to a snapshot of the
enumeration at a given point in time without copying it.

While lazy lists are easy to adapt to trees, enumerations are inherently linear.

You Can Do More If You’re Lazy, CS251 Spring ’07 – p.23/23


	Overview of Today's Lecture
	Sample Haskell Expressions
	More Haskell Expressions
	Haskell Types
	Qualified Types in Haskell
	Haskell Definitions
	A Modularity Problem
	Non-Modular Haskell Solutions
	{large A More Modular Approach: Infinite Lists}
	Processing Infinite Lists
	{large Modular Infinite List Processing Examples}
	Scanning
	{large Higher-order Infinite List Generation}
	Cyclic Definitions of Infinite Lists
	Generating Primes
	Lazy Trees
	{large Streams: Lazy Lists for Scheme and Hoilec}
	Hoilec Streams
	Hoilec Stream Examples I
	Scheme Stream Examples II
	{large Implementing Lazy Data in Strict Languages}
	Java Iterators

