CS251 Programming Languages Handout # 47
Prof. Lyn Turbak May 5, 2007
Wellesley College Revised May 16, 2007

Problem Set 9
Due: Wednesday, May 9

Revisions: (1) Changed the handout date to be 2007 (not 2005) (2) Changed the number of the Hughes paper handout
to #53 (#46 was already used for PS7 solutions)

Overview:

This problem set is completely optional. If you do not submit any problems from problem
set, there will be no negative impact on your grade. Any problems that you do submit will be
included in your group problem set average only if they would improve your average. So
submitting problems from this assignment can only help your grade.

All of the problems on this assignment are group problems. These problems cover stateful
programming, parameter passing, memory management, and lazy data, all of which are possible
topics for the final exam. Whether or not you submit any problems from this problem set, you
should study the solutions to these problems to prepare for the final exam.

Reading:

Handout #45: Parameter Passing

Handout #48: You Can Do More If You're Lazy

Handout #49: Haskell and HUGS

Handout #50: Compound Data and Memory Management

Handout #51: (optional) Garbage Collection chapter from Turbak & Gifford with Sheldon’s
Design Concepts in Programming Languages

e Handout #53: John Hughes’s article Why Functional Programming Matters

Working Together:

On this assignment, students may work together in groups of any size. Also, the rule about
all students on a group working at the same time will be relaxed. As long as each student in the
group is contributing to every group problem and is communicating with other group members on
a frequent basis, students in a group may work in whatever way is best for their schedules.

Group Problem Submission:
Each team should turn in a single hardcopy submission packet for all Group problems by slipping
it under Lyn’s office door any time on Wednesday, May 9.

1. a team header sheet indicating the time that you (and your partners, if you working with
some) spent on the parts of the assignment.

2. your (i) environment diagram from Problem la and (ii) your HOILIC program diagram.hic
from Problem 1b;

3. your environment diagrams and values for Problem 2;
4. your HOILIC expression file param.hic from Problem 3;
5. your HoILIC definition file cell.hic from Problem 4;

6. your (i) paragraph for Problem 5a, (ii) final version of sqrt.hec for Problem 5b, (iii) final
version of Hamming.hs for Problem 5c¢ (iv) final version of Hamming. java and your answer to
the efficiency question for Problem 5d.

7. your pencil-and-paper answers to Problem 6.

Each team should also submit a single softcopy (consisting of your final ps9-group directory) to
the drop directory ~cs251/drop/p8/username, where username is the username of one of the team
members (indicate which drop folder you used on your hardcopy header sheet). To do this, execute:

cd /students/username/cs251
cp -R ps9-group “cs251/drop/ps9/username/

Group Problems

Group Problem 1 [20]: Stateful Environment Diagrams

Fig. 1, shows an environment diagram depicting the state of a HOILIC program. Recall that in
Hoivic, all variables are implicitly bound to cells, which are implicitly dereferenced when variables
are looked up. The contents of a cell can be changed by the assignment construct, <-.

a. [15] Suppose that a HoOILIC program is in the state shown in Fig. 1, and the following
expresssion F.q is evaluated in environment frame Fj.
Eist = (seq (println (list a b))
(println (list (g 1) (h 1)))
(h "b") (println (list (g 1) (h 1)))
(g "a") (println (list (g 1) (h 1)))
(g "p") (println (list (g 1) (h 1)))
(h "g") (println (list (g 1) (h 1)))
(println (list a b)))

e Make a copy of Fig. 1 and draw all new environment frames that are created during the
evaluation of Fjeq.

e Show how the contents of cells in your diagram change over time by crossing out old values
and writing the new values to their right.

e Write down the values that are displayed when F..; is evaluated.

b. [5] Write a HOILIC program containing E.s that, when executed on the two arguments 5
and 7, would create the environments depicted in Fig. 1 and would evaluate E.s in frame F7.

Notes:

e Hint: What must the abstraction (fun ...) of the closure named f be?
e In HOILIC, bindrec is not a kernel form, but is defined by the following syntactic sugar:
(bindrec ((I; E;) ... Iy En)) Epoay)

~> (bindpar ((I; #£) ... (I, #f))
(seq (<= I; Ey)

(<_ II En)
Ebody))

Not only does this guarantee that the identifiers I; ...I, are defined in a single mutual
recursive scope, but it also allows the expression F; to directly reference the identifiers
I; ... I,—;. (In HoFL and HOILEC, any such references would denote “black holes”.) For
example, the expression

(bindrec ((a 1)
(f (fun) (seq (<- a (x a 10)) a)))
(b (x 2 a))
(c (£))
@@+ (x3a) (+ (x4 (£)) (x5 a)))))
(list a b ¢ d))

evaluates to the value (1ist 100 2 10 930).

e You are not required to test your program, but if you wish to do so, you can write it in
the file “/cs251/ps9-group/diagram.hic and can test it by executing the following in the
OCAML interpreter:

#cd "/students/your-username/cs251/ps9-group";;
#use "load-diagram.ml";;
testDiagram() ;;

The first two lines load the HOILIC interpreter and testing code. These only need to be
evaluated once. You can re-evaluate testDiagram every time you change diagram.hic.

b—{20] b—-{100]

=] 00

(fun (m)
(if (int? m)

(* a (+ m b))

(cond
((str=m "a") (k- a (+ a 1))
((str=m "b") (<= b (*x b 2)))
((str=m "g") (<- g (fun (x) (+ b (*x x a)))))
(else (error (str+ "Unknown message:" m))))))

Figure 1: A HoILIC environment diagram.

Group Problem 2 [20]: Parameter Passing
Consider the following HOILIC expression:
(bind a 1
(bind inc! (fun () (seq (<- a (+ a 1)) a))

(bind £ (fun (y z)

(seq (k- y (+y 3))

(+ a (x z 2))))
(f a (incH))))

For each of the following parameter-pasing mechanisms, (i) draw an environment diagram that
shows how the above expression is evaluated in statically-scoped HOILIC using that parameter-
passing mechanism and (ii) indicate the value of the expression.

e (Call-by-value

e Call-by-reference

e (Call-by-name

e Call-by-lazy (i.e., call-by-need)

Notes:

e Remember that in HOILIC an environment associates names with implicit cells. In your
diagrams, every environment name should be associated with a box representing the cell.
The contents of the cell may change over time.

e In the environment diagram for call-by-name, represent a thunk as box with named exp
(expression) and env (environment) components.

e In the environment diagram for call-by-lazy, represent a promise as box with named exp
(expression), env (environment), and memo (memoized result cell) components.

e The diagrams are essential for getting credit on this problem. However, you can check the
value of the expression under the four parameter-passing mechanisms as follows:

#cd "/students/your-username/cs251/ps9-group";;

#use "load-hoilic-all.ml";;
. lots of printout omitted ...

testHoilicExpFile "prob2.hic";;

Group Problem 3 [20]: Parameter-Passing Mechanisms
In the file /cs251/ps9-group/param.hic, write a single HOILIC expression (let’s call it E poram)
such that:

Eparam evaluates to the symbol (sym value) in call-by-value HOILIC;

Eporam evaluates to the symbol (sym reference) in call-by-reference HoILIC;

Eparam evaluates to the symbol (sym name) in call-by-name HOILIC;

Eparam evaluates to the symbol (sym lazy) in call-by-lazy (i.e., call-by-need) HoILIC.

Notes:

Eporam may be built out of any kinds of HOILIC expressions, but the only types of values
that these expressions should manipulate are symbols, functions, and the implicit mutable
variables of HoiLic. That is, your example should not use any integers, booleans, characters,
strings, or lists. Strive to make your expression as simple and understandable as possible.

If you cannot solve this problem with just symbols, functions, and implicit mutable variables,
you can get partial credit by solving the problem using other types of values.

You will get partial credit if your expression distinguishes some, but not all, of the parameter-
passing mechanisms.

You can test your definition by executing the following in the OCAML interpreter:

#cd "/students/your-username/cs251/ps9-group";;

#use "load-hoilic-all.ml";;
. lots of printout omitted ...

testHoilicExpFile "param.hic";;

The first two lines load the HOILIC interpreter and testing code. These need to be evaluated
only once. You can re-evaluate the final expression every time you change param.hic. The
result of evaluating this expression should be:

testHoilicExpFile "param.hic";;

Value of expression in CBV Hoilic: (sym value)

Value of expression in CBR Hoilic: (sym reference)

Value of expression in CBN Hoilic: (sym name)
Value of expression in CBL Hoilic: (sym lazy)

- : unit = O

Group Problem 4 [15]: Explicit Mutable Cells

HoilLIiCc does not support the explicit mutable cells of HOILEC. However, it is possible for
a HOILIC user (not just the language implementer) to add these to HOILIC by fleshing out the
following skeleton HoILIC definitions in file “/ps9-group/cell.hic:

(def (cell contents) Fceji—body)
(def (" ¢) (c #t))
(def (:= ¢ V) Eset—pody)

Note that ~ has already been defined for you.
Notes:

e Hint: Use the message-passing approach to implementing stateful objects covered in Handout
#42 (where in this case messages are the booleans #t and #f). However, your definitions
should be considerably simpler than those in the OOP example from Handout #42. Each
expression should be at most a few lines long.

e You can use any HOILIC expressions you want, but the only types of literal values that your
expressions should use are booleans and functions. Your example should not use any integers,
characters, symbols, strings, or lists. (You may submit solutions with values of these other
types, but you will only receive partial credit if you do so.)

e Unlike the HOILEC := primitive operator, your HOILIC := function will be curried. ILe.,
(:= a b) is equivalent to ((:= a) 5).

e You can test your definitions by executing the following in the OCAML interpreter:

#cd "/students/your-username/cs251/ps9-group";;
#use "load-cell.ml";;

testCell();;

The first two lines load the HOILIC interpreter and testing code. These need to be evaluated
only once. You can re-evaluate testCell every time you change cell.hic. Here is what the
transcript of testCell() should look like:

testCell();;

Creating cell cl via (cell 17)
Creating cell c2 via (cell 42)

Value of (~ cl1) is now: 17

Value of (~ c2) is now: 42

Value of (:=cl (x 2 (" c1))) is: 17
Value of (~ cl1) is now: 34

Value of (~ c¢2) is now: 42

Value of (:= cl (:=c2 (" c1))) is: 34
Value of (~ cl1) is now: 42

Value of (~ c¢2) is now: 34

34

- : unit = (O

Group Problem 5 [55]: Lazy Data

a. [10]: Why Laziness Matters In his paper, “Why Functional Programming Matters”
(Handout #53), John Hughes argues that lazy evaluation is an essential feature of the functional
programming paradigm. Briefly summarize his argument in one paragraph.

b. [15]: Square roots Create a file ~/cs251/ps9-group/sqrt.hec in which you translate
the Newton-Rhapson square-root example from pp. 27-29 of Hughes’s paper into HOILEC using
streams (i.e., lists whose tails are lazy). As described in Handout #48, here is a HOILEC interface
to streams:

(Sprep Ehead Etail)
Create a stream whose head is the value of E}..,q and whose tail is the delayed computation
of Etail'

(shead str)
Returns the head of the stream str.

(stail str)

Returns the stream that is the tail of str. Invoking this for the first time on a stream
whose delayed tail has not yet been computed causes it to be computed. The result of this
computation is returned by any subsequent invocation of stail on the same stream.

(sempty)
Returns an empty stream.

(sempty? str)
Returns #t if str is an empty stream, and #f otherwise.

The OcAML modules HoilecStreams and HoilecStreamsEnvInterp implement a version of the
HoiLEC language that supports both streams and floating point numbers. The names of floating
point operations are obtained by adding f in front of the corresponding integer operations: f+,
f-, £*, £/, £<, f<=, f=, £!=, £>= and £>. Floating point literals must include an explicit dot.
E.g., you must write (f+ 1.0 3.1459) rather than (f+ 1 3.1459).

You can test your file as shown in the following transcript, which finds the square root of 2 at
various tolerances:

#cd "/students/your-username/cs251/ps9-group";;

#use "load-hoilec-streams.ml";;
. lots of printout omitted ...

replQ);;

hoilec-streams> (load "sqrt.hec")
sqrt

repeat

within

fabs

next

hoilec-streams> (sqrt 1.0 1.0 2.0)
1.5

hoilec-streams> (sqrt 1.0 0.1 2.0)
1.41666666667

hoilec-streams> (sqrt 1.0 0.01 2.0)
1.41421568627

hoilec-streams> (sqrt 1.0 0.001 2.0)
1.41421356237

hoilec-streams> (sqrt 1.0 0.0001 2.0)
1.41421356237

c. [15]: Hamming Numbers in HASKELL Create a file “/cs251/ps9-group/Hamming.hs
in which you define the following HASKELL functions. (See Handout #49 for how to write and
test HASKELL functions using HUGS.)

e The scale function takes a scaling factor and an infinite list of integers and returns a new
list each of whose elements is a scaled version of the corresponding element of the original
list.

e The merge function two infinite lists of integers, each in sorted order, and returns a new
list, also in sorted order, that has all the elements of both input streams. The resulting list
should not contain duplicates (use == to test for equality).

e The Hamming numbers are the set of positive integers whose prime factors only include the
numbers 2, 3, and 5. For example, the first 15 Hamming numbers are 1, 2, 3, 4, 5, 6, 8, 9,
10, 12, 15, 16, 18, 20, and 24. Define an infinite list named hamming that contains all of the
Hamming numbers, in order. (Hint: use scale and merge from above.) Using the HASKELL
take function, give a list of the first 52 Hamming numbers.

For example, here is a transcript of some tests of these functions on wampeter.wellesley.edu
(the only Linux machine on which HASKELL is installed):

[fturbak@wampeter fturbak] hugs

[I Hugs 98: Based on the Haskell 98 standard
1l Copyright (c) 1994-2001
[World Wide Web: http://haskell.org/hugs
Report bugs to: hugs-bugs@haskell.org

Haskell 98 mode: Restart with command line option -98 to enable extensions
Reading file "/usr/share/hugs/lib/Prelude.hs":

Hugs session for:

/usr/share/hugs/1ib/Prelude.hs

Type :7 for help

Prelude> :cd ~/cs251/ps9-group

Prelude> :load hamming.hs
Reading file "hamming.hs":

Hugs session for:
/usr/share/hugs/1ib/Prelude.hs

hamming.hs

Main> take 10 (scale 5 nats) where nats = 0 : (map (1+) nats)
[0,5,10,15,20,25,30,35,40,45]

Main> take 30 (merge (scale 4 nats) (scale 7 nats)) where nats = 0 : (map (1+) nats)
(0,4,7,8,12,14,16,20,21,24,28,32,35,36,40,42,44,48,49,52,56,60,63,64,68,70,72,76,77,80]

Main> take 20 (merge (scale 4 nats) (scale 7 nats)) where nats = 0 : (map (1+) nats)
[0,4,7,8,12,14,16,20,21,24,28,32,35,36,40,42,44,48,49,52]

Main> take 25 (merge (scale 4 nats) (scale 7 nats)) where nats = 0 : (map (1+) nats)
[0,4,7,8,12,14,16,20,21,24,28,32,35,36,40,42,44,48,49,52,56,60,63,64,68]

Main> take 52 hamming
(1,2,3,4,5,6,8,9,10,12,15,16,18,20,24,25,27,30,32,36,40,45,48,50,54,60,64,72,75,80,81
90,96,100,108,120,125,128,135,144,150,160,162,180,192,200,216,225,240,243,250,256]

d. [15]: Hamming Numbers in JAvA

i. In the file "/cs251/ps9-group/Hamming. java, flesh out the skeleton of the Hamming class
(Fig. 2) that implements the Iterator<String> interface and enumerates the Hamming
numbers. Study the FibIterator class at the end of Handout #48 as an example of a JAVA
class that enumerates an infinite sequences of integers. As in FibIterator, you will have to
iterate integers wrapped in the Integer class to satisfy the constraint that next must return
an Integer.1

Choose the simplest strategy you can think of for generating the Hamming numbers one at
a time. Compile your file using javac Hamming.java, and test it via java Hamming, which
will display the first 52 elements of your iterator, or java Hamming n, which will display the
first n elements of your iterator.? For example:

[fturbak@puma ps9-group] javac Hamming.java

[fturbakOpuma ps9-group] java Hamming
12345689 1012 15 16 18 20 24 25 27 30 32 36 40 45 48 50 54 60 64 72 75
80 81 90 96 100 108 120 125 128 135 144 150 160 162 180 192 200 216 225 240 243

250 256

[fturbak@puma ps9-group] java Hamming 10
12345689 10 12

[fturbak@puma ps9-group] java Hamming 100

12345689 10 12 15 16 18 20 24 25 27 30 32 36 40 45 48 50 54 60 64 72 75
80 81 90 96 100 108 120 125 128 135 144 150 160 162 180 192 200 216 225 240 243
250 256 270 288 300 320 324 360 375 384 400 405 432 450 480 486 500 512 540 576
600 625 640 648 675 720 729 750 768 800 810 864 900 960 972 1000 1024 1080 1125

1152 1200 1215 1250 1280 1296 1350 1440 1458 1500 1536

ii. Which approach to generating Hamming numbers is more efficient: the approach you use
in your HASKELL program or the approach you use in your JAVA program? Explain.

!Actually, if you forget to wrap the int value in an Integer object, the auto-boxing feature of Java 1.5 will
automatically do this for you.
2If n is a non-negative integer, then java Hamming n will enumerate the first n elements.

10

import java.util.*; // imports Iterator interface
public class Hamming implements Iterator<Integer> {
// Put instance variable(s) here.

public Hamming () {
// Flesh out this constructor method
}

public boolean hasNext () {return true;}

public Integer next () {
// Replace this stub.
return new Integer(1);

3

// The Iterator interface requires that this method be implemented
public void remove() {
throw new UnsupportedOperationException(
"This iterator does not support the remove() operation.");

}
// Add any auxiliary methods here.

// Testing method
public static void main (String[] args) {
int i = 52; // default number
if (args.length == 1) {
i = Integer.parselnt(args[0]);
}
Iterator<Integer> h = new Hamming();
while (i > 0) {
System.out.print(h.next());
System.out.print(" ");
i--;
¥
System.out.println();

Figure 2: Skeleton of the Hamming class for enumerating Hamming numbers.

11

Group Problem 6 [40]: Garbage Collection

Consider the list memory shown below, in which the slot at every odd address a represents the
head of a list node and the slot at its associated even address a + 1 represents the tail of a list node.
Because all blocks in this memory are list nodes and known to have two slots, there is no need for
header blocks in this memory. Assume that entities beginning with n are immediate integers and
entities beginning with p are pointers. p0 is the distinguished null pointer.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
| p13 [p5 | nl | p5|n2|pl3[pll[p9 |n3[p0|nd|p7|p5|pls|n5|po]

a. [10] Suppose that the above memory represents a collection a list nodes, each of which is
allocated in two contiguous cells. Draw a box-and-pointer diagram showing all the list nodes.

b. [20] Suppose that the list memory shown above is the “from-space” in a stop-and-copy
garbage collector, and that the list node at address pl is the root of the accessible list nodes.
Show the “to-space” that results from performing a stop-and-copy garbage collection. Assume
that the addresses of to-space are 17 through 32, and that the garbage collection begins with by
copying the root pointer pl to slot 17.

c. [10] Answer the following questions:

e What is the main problem with reference counting as a form of garbage collection?

e What is the key advantage of stop-and-copy garbage collection in comparison with mark-
sweep garbage collection?

e What is an advantage of mark-sweep garbage collection over stop-and-copy garbage collec-
tion?

Extra Credit 1 [80]: More Garbage Collection
Do problems 18.5 and 18.7 in the Turbak & Gifford with Sheldon Garbage Collection chapter.
Partial credit will be awarded for progress made on any parts of these problems.

12

Group Problem Header Page
Please make this the first page of your hardcopy submission for group problems.

CS251 Problem Set 9 Group Problems
Due Wednesday, May 9

Names of Team Members:
Date & Time Submitted:

Collaborators (anyone you or your team collaborated with):

By signing below, I/we attest that I/we have followed the collaboration policy
as specified in the Course Information handout.
Signature(s):

In the Time column, please estimate the time you or your team spent on the parts of this problem
set. Team members should be working closely together, so it will be assumed that the time reported
s the time for each team member. Please try to be as accurate as possible; this information will
help me design future problem sets. I will fill out the Score column when grading you problem set.

Part Time Score

General Reading

Problem 1 [20]

Problem 2 [20]

Problem 3 [20]

Problem 4 [15]

Problem 5 [55]

Problem 6 [40]

Total

13

