
Expression trees S-Expressions S-expressions of sum-of-products

Expression trees and S-expressions
Representing the structure of programming

languages

Theory of Programming Languages
Computer Science Department

Wellesley College

Expression trees S-Expressions S-expressions of sum-of-products

Table of contents

Expression trees

S-Expressions

S-expressions of sum-of-products

Expression trees S-Expressions S-expressions of sum-of-products

Expression trees

• The most common kind of trees
that we will manipulate in this
course are trees that represent
the structure of programming
language expressions (and other
kinds of program phrases).

• In this lecture we begin to
explore some of the concepts
and techniques used for
describing and representing
expressions.

Expression trees S-Expressions S-expressions of sum-of-products

EL: A simple expression language

Integer Expressions

An EL integer expression is one of:

• an intlit — an integer literal (numeral) num;

• a variable reference — a reference to an integer variable named
name

• an arithmetic operation — an application of a rator, in this case a
binary arithmetic operator, to two integer rand expressions, where
an arithmetic operator is one of:

• addition,
• subtraction,
• multiplication,
• division,
• remainder;

• a conditional — a choice between integer then and else expressions
determined by a boolean test expression.

Expression trees S-Expressions S-expressions of sum-of-products

EL Boolean expressions

An EL boolean expression is one of:

• a boollit — a boolean literal bool (i.e., a true or false constant);

• a negation — the negation of a boolean expression negand;

• a relational operation — an application of rator, in this case a
binary relational operator, to two integer rand expressions, where a
relational operator is one of:

• less-than,
• equal-to,
• greater-than;

• a logical operation — an application of a rator, in this case a binary
logical operator, to two boolean rand expressions, where a logical
operator is one of:

• and,
• or.

Expression trees S-Expressions S-expressions of sum-of-products

The anatomy of an expression

• An integer expression in EL can be constructed out of various
kinds of components. Some of the components, like integer
literals, variable references, and arithmetic operators, are
primitive — they cannot be broken down into subparts.

• Other components, such as arithmetic operations and
conditional expressions, are compound — they are constructed
out of constituent components.

• The components have names; e.g., the subparts of an
arithmetic operation are the rator (short for “operator”) and
two rands (short for “operands”), while the subexpressions of
the conditional expression are the test expression, the then
expression, and the else expression.

Expression trees S-Expressions S-expressions of sum-of-products

Abstract grammars: A wiring chart for expressions

• The structural description given above constrains the ways in
which integer and boolean expressions may be “wired
together.”

• Boolean expressions can appear only as the test expression of a
conditional, the negand of a negation, or the operands of a
logical operation.

• Integer expressions can appear only as the operands of
arithmetic or relation operations, or as the then or else
expressions of a conditional.

• A specification of the allowed wiring patterns for the syntactic
entities of a language is called a grammar.

• The above description is said to be an abstract grammar
because it specifies the logical structure of the syntax but
does not give any indication how individual expressions in the
language are actually written down in a concrete form.

Expression trees S-Expressions S-expressions of sum-of-products

Abstract syntax trees

Parsing an expression with an abstract grammar results in a value
called an abstract syntax tree (AST).

Expression trees S-Expressions S-expressions of sum-of-products

Recasting an AST as a sum-of-product tree

We can easily recast any AST as a sum-of-product tree by
dropping the edge labels and fixing the left-to-right order of
components for compound nodes.

Expression trees S-Expressions S-expressions of sum-of-products

Ocaml data type declarations for our AST

Based on this observation, we can describe any EL expressions
using the following Ocaml data type declarations:

type intExp = (* integer expressions *)
Intlit of int (* value *)

| Varref of string (* name *)
| Arithop of arithRator * intExp * intExp (* rator, rand1, rand2 *)
| Cond of boolExp * intExp * intExp (* test, then, else *)

and boolExp = (* boolean expressions *)
Boollit of bool (* value *)

| Not of boolExp (* negand *)
| Relop of relRator * intExp * intExp (* rator, rand1, rand2 *)
| Logop of logRator * boolExp * boolExp (* rator, rand1, rand2 *)

and arithRator = Add | Sub | Mul | Div | Rem (* arithmetic operators *)

and relRator = LT | EQ | GT (* relational operators *)

and logRator = And | Or (* logical operators *)

Expression trees S-Expressions S-expressions of sum-of-products

The parsing problem

Consider the binary tree:

We can create this in Ocaml using constructors:

Node(Node(Leaf, 2, Leaf),
4,
Node(Node(Leaf, 1, Node(Leaf, 5, Leaf)),

6,
Node(Leaf, 3, Leaf))

But we’d prefer to use more concise tree notations like:

((* 2 *) 4 ((* 1 (* 5 *)) 6 (* 3 *))) ; ‘‘compact’’

((2) 4 ((1 (5)) 6 (3))) ; ‘‘dense’’

Expression trees S-Expressions S-expressions of sum-of-products

Another example

As another example, consider the sample EL integer expression tree
from the previous page. Rather than express it via Ocaml con-
structors, we’d like to use a more concise expression notation. Here
are some examples:

if x>0 && !(x=y) then 1 else y*z ; Standard infix notation

(if ((x > 0) && (! (x = y))) then 0 else (y * z)) ; Fully
parenthesized infix notation

x 0 > x y = ! && (1) (y z *) if; Postfix notation

if && > x 0 ! = x y 1 * y z ; Prefix notation

(if (&& (> x 0) (! (= x y))) 1 (* y z)) ; Fully

parenthesized prefix notation

Expression trees S-Expressions S-expressions of sum-of-products

The parsing problem

• To use any character-based
notation for binary trees and
EL expressions it is necessary to
decompose a character string
using one of these notations
into fundamental tokens and
then parse these tokens into the
desired Ocaml constructor
tree.

• The problem of transforming a
linear character string into a
constructor tree is called the
parsing problem.

Expression trees S-Expressions S-expressions of sum-of-products

Overview of S-expressions

• A symbolic expression (s-expression for short) is a simple
notation for representing tree structures using linear text
strings containing matched pairs of parentheses.

• Each leaf of a tree is an atom, which (to first approximation)
is any sequence of characters that does not contain a left
parenthesis (‘(’), a right parenthesis (‘)’), or a whitespace
character (space, tab, newline, etc.).

• Examples of atoms include x, this-is-an-atom,
anotherKindOfAtom, 17, 3.14159, 4/3*pi*r^2, a.b[2]%3,
’Q’, and "a (string) atom".

Expression trees S-Expressions S-expressions of sum-of-products

Nodes of an s-expression tree

A node in an s-expression tree is represented by a pair of parentheses
surrounding zero or s-expressions that represent the node’s subtrees.
For example, the s-expression

((this is) an ((example) (s-expression tree)))

designates the structure depicted below:

Expression trees S-Expressions S-expressions of sum-of-products

Enhancing the readability of an s-expression tree

Whitespace is necessary for separating atoms that appear next to
each other, but can be used liberally to enhance (or obscure!) the
readability of the structure. Thus, the above s-expression could also
be written as

((this is)
an
((example)
(s-expression
tree)))

or (less readably) as

(
(this

is) an ((example
) (

s-expression tree)
)

)

without changing the structure of the tree.

Expression trees S-Expressions S-expressions of sum-of-products

A simple solution to the parsing problem

• We shall see that s-expressions
are an exceptionally simple and
elegant way of solving the
parsing problem — translating
string-based representations of
data structures and programs
into the tree structures they
denote.

• For this reason, all the
mini-languages we study later in
this course have a concrete
syntax based on s-expressions.

Expression trees S-Expressions S-expressions of sum-of-products

Representing s-expressions in Ocaml

As with any other kind of tree-shaped data, s-expressions can be
represented in Ocaml as values of an appropriate data type.

type sexp =
Int of int

| Flt of float
| Str of string
| Chr of char
| Sym of string
| Seq of sexp list

Expression trees S-Expressions S-expressions of sum-of-products

S-expression nodes

The nodes of s-expression trees are represented via the Seq construc-
tor, whose sexp list argument denotes any number of s-expression
subtrees. For example,

(stuff (17 3.14159) ("foo" ’c’ bar))

which would be expressed in general tree notation as

Expression trees S-Expressions S-expressions of sum-of-products

Ocaml s-expression equivalent

This s-expression can be written in in Ocaml ascolorblue

Seq [Sym("stuff");
Seq [Int(17); Flt(3.14159)];
Seq [Str("foo"); Chr(’c’); Sym("bar")]]

which corresponds to the following constructor tree:

Expression trees S-Expressions S-expressions of sum-of-products

A somewhat simplier representation

In the constructor tree, nodes labeled [] represent lists whose
elements are shown as the children of the node. Since it’s
cumbersome to write such list nodes explicitly, we will often omit
the explicit [] nodes and instead show Seq nodes as having any
number of children:

Expression trees S-Expressions S-expressions of sum-of-products

The Sexp module in /cs251/util/Sexp.ml

module type SEXP = sig

(* The sexp type is exposed for the world to see *)
type sexp =

Int of int
| Flt of float
| Str of string
| Chr of char
| Sym of string
| Seq of sexp list

exception IllFormedSexp of string
(* This exception is used for all errors in s-expression manipulation *)

val stringToSexp : string -> sexp
(* (stringToSexp <str>) returns the sexp tree represented by the s-expression

<str>. Raise an IllFormedSexp exception if <str> is not a valid
s-expression string. *)

val stringToSexps : string -> sexp list
(* (stringToSexps <str>) returns the list of sexp trees represented by <str>, which

is a string containing a sequence of s-expressions. Raise an IllFormedSexp
exception if <str> not a valid representation of a sequence of s-expressions. *)

val fileToSexp : string -> sexp
(* (fileToSexp <filename>) returns the sexp tree represented by the s-expression

contents of the file named by <filename>. Raises an IllFormedSexp exception
if the file contents is not a valid s-expression. *)

Expression trees S-Expressions S-expressions of sum-of-products

The Sexp module continued

val sexpToString : sexp -> string
(* (sexpToString <sexp>) returns an s-expression string representing <sexp> *)

val sexpToString’ : int -> sexp -> string
(* (sexpToString’ <width> <sexp>) returns an s-expression string representing

<sexp> in which an attempt is made for each line of the result to be
<= <width> characters wide. *)

val sexpsToString : sexp list -> string
(* (sexpsToString <sexps>) returns string representations of the sexp trees

in <sexps> separated by two newlines. *)

val sexpToFile : sexp -> string -> unit
(* (sexpsToFile <sexp> <filename>) writes a string representation of <sexp>

to the file name <filename>. *)

val readSexp : unit -> sexp
(* Reads lines from standard input until a complete s-expression has been

found, and returns the sexp tree for this s-expresion. *)

end

Expression trees S-Expressions S-expressions of sum-of-products

Invocations of the functions from Sexp

let s = Sexp.stringToSexp "(stuff (17 3.14159) (\"foo\" ’c’ bar))";;
val s : Sexp.sexp =

Sexp.Seq
[Sexp.Sym "stuff"; Sexp.Seq [Sexp.Int 17; Sexp.Flt 3.14159];
Sexp.Seq [Sexp.Str "foo"; Sexp.Chr ’c’; Sexp.Sym "bar"]]

Sexp.sexpToString s;;
- : string = "(stuff (17 3.14159) (\"foo\" ’c’ bar))"

Sexp.sexpToString’ 20 s;;
- : string =
"(stuff (17 3.14159)\n (\"foo\" ’c’\n bar\n)\n)"

let ss = Sexp.stringToSexps "stuff (17 3.14159) (\"foo\" ’c’ bar)";;
val ss : Sexp.sexp list =

[Sexp.Sym "stuff"; Sexp.Seq [Sexp.Int 17; Sexp.Flt 3.14159];
Sexp.Seq [Sexp.Str "foo"; Sexp.Chr ’c’; Sexp.Sym "bar"]]

Sexp.sexpsToString ss;;
- : string = "stuff\n\n(17 3.14159)\n\n(\"foo\" ’c’ bar)"

Sexp.readSexp();;
(a b

(c d e)
(f (g h))
i)

- : Sexp.sexp =
Sexp.Seq
[Sexp.Sym "a"; Sexp.Sym "b";
Sexp.Seq [Sexp.Sym "c"; Sexp.Sym "d"; Sexp.Sym "e"];
Sexp.Seq [Sexp.Sym "f"; Sexp.Seq [Sexp.Sym "g"; Sexp.Sym "h"]];
Sexp.Sym "i"]

Expression trees S-Expressions S-expressions of sum-of-products

The Sexp module continued

We will mainly use s-expressions for representing the trees implied
by sum-of-product data type constructor invocations in a standard
format. We will represent a tree node with tag tag and subtrees
t1 . . . tn by an s-expression of the form:

(tag <s-expression for t1> . . . <s-expression for tn>)

For instance, consider the representations of fig values:

Expression trees S-Expressions S-expressions of sum-of-products

Using s-expression representations

To use the s-expression representation of figures, we need a way to
convert between fig constructor trees and s-expression constructor
trees:

let toSexp fig =
match fig with
Circ r -> Seq [Sym "Circ"; Flt r]

| Rect (w,h) -> Seq [Sym "Rect"; Flt w; Flt h]
| Tri (s1,s2,s3) -> Seq [Sym "Tri"; Flt s1;

Flt s2; Flt s3]
let fromSexp sexp =
match sexp with
Seq [Sym "Circ"; Flt r] -> Circ r

| Seq [Sym "Rect"; Flt w; Flt h] -> Rect (w,h)
| Seq [Sym "Tri"; Flt s1; Flt s2; Flt s3] ->

Tri (s1,s2,s3)
| _ -> raise (Failure

("Fig.fromSexp -- can’t handle sexp:\n"
^ (sexpToString sexp)))

Expression trees S-Expressions S-expressions of sum-of-products

Using our new conversion tools

We use toSexp and fromSexp in any context where we wish to
interactively manipulated fig values specified in files or keyboard
input from users. For example, suppose we want to interactively
scale figures as shown below:

Fig.interactiveScale();;
Enter a scaling factor> 2.3

Enter a sequence of figures
(in s-expression format) on one line>

(Circ 1.0) (Rect 2.0 3.0) (Tri 4.0 5.0 6.0)

Here are the scaled results:
(Circ 2.3)
(Rect 4.6 6.9)
(Tri 9.2 11.5 13.8)
- : unit = ()

Expression trees S-Expressions S-expressions of sum-of-products

Behind the curtain

Here’s how we would defined interactiveScale in Ocaml:

let interactiveScale () =
let _ = StringUtils.print "Enter a scaling factor> " in
let s = read_float() in
let _ = StringUtils.println

"\nEnter a sequence of figures
(in s-expression format) on one line> " in

let line = read_line() in
let figs = map fromSexp (stringToSexps line) in
let scaled_figs = map (scale s) figs in
let _ = StringUtils.println

"\nHere are the scaled results:" in
for_each (fun fig ->

StringUtils.println
(sexpToString (toSexp fig))) scaled_figs

Expression trees S-Expressions S-expressions of sum-of-products

And what about binary trees?

Here is our binary tree example:

Using the above conventions, this would be represented via the s-
expression:

(Node (Node (Leaf) 2 (Leaf))
4
(Node (Node (Leaf) 1 (Node (Leaf) 5 (Leaf)))

6
(Node (Leaf) 3 (Leaf)))) ; ‘‘verbose’’

Expression trees S-Expressions S-expressions of sum-of-products

A more economical representation

But this is not a very compact representation! As mentioned above,
we can often develop more compact representations for particular
data types. For instance, here are other s-expressions representing
the binary tree above:

((* 2 *) 4 ((* 1 (* 5 *)) 6 (* 3 *))) ; ‘‘compact’’

((2) 4 ((1 (5)) 6 (3))) ; ‘‘dense’’

In the following slide we develop functions that convert between
binary trees and these more concise s-expression notations.

Expression trees S-Expressions S-expressions of sum-of-products

Binary trees to verbose s-expressions and back

let rec toVerboseSexp eltToSexp tr =

let rec fromVerboseSexp eltFromSexp sexp =

let rec toCompactSexp eltToSexp tr =

let rec fromCompactSexp eltFromSexp sexp =

let rec toDenseSexp eltToSexp s =

let rec fromDenseSexp eltFromSexp sexp =

