Introduction to Racket, a dialect of LISP:
Expressions and Declarations

CS251 Programming Languages Spring 2017, Lyn Turbak

Department of Computer Science
Wellesley College

LISP: implemented by Steve Russell, early 1960s

LISP: designed by John McCarthy, 1958 published 1960

Expr/decl

LISP: LISt Processing

- McCarthy, MIT artificial intelligence, 1950s-60s
- Advice Taker: represent logic as data, not just program

- Needed a language for:
- Symbolic computation

- Programming with logic
- Artificial intelligence
- Experimental programming
- So make one!

Scheme

- Gerald Jay Sussman and Guy Lewis Steele (mid 1970s)
- Lexically-scoped dialect of LISP that arose from trying to make
 an "actor" language.
- Described in amazing "Lambda the Ultimate" papers (http://library.readscheme.org/page1.htmI)
- Lambda the Ultimate PL blog inspired by these:
http://lambda-the-ultimate.org
- Led to Structure and Interpretation of Computer Programs (SICP) and MIT 6.001 (https://mitpress.mit.edu/sicp/)

Racket

- Grandchild of LISP (variant of Scheme)
- Some changes/improvements, quite similar
- Developed by the PLT group
(https://racket-lang.org/people.html), the same folks who created DrJava.
- Why study Racket in CS251?
- Clean slate, unfamiliar
- Careful study of PL foundations ("PL mindset")
- Functional programming paradigm
- Emphasis on functions and their composition
- Immutable data (lists)
- Beauty of minimalism
- Observe design constraints/historical context

Values

- Values are expressions that cannot be evaluated further.
- Syntax:
- Numbers: 251, 240, 301
- Booleans: \#t, \#f
- There are more values we will meet soon (strings, symbols, lists, functions, ...)
- Evaluation rule:
- Values evaluate to themselves.

Addition expression: syntax

Adds two numbers together.
Syntax: (+ E1 E2)
Every parenthesis required; none may be omitted.
$E 1$ and $E 2$ stand in for any expression.
Note prefix notation.
Examples: structure!
(+ 251 240)
(+ (+ 251 240) 301)
(+ \#t 251)

Addition: dynamic type checking

Syntax: (+ E1 E2)
Evaluation rule:
Still not quite!
More later ...

1. evaluate $\boldsymbol{E 1}$ to a value V1
2. Evaluate $\mathbf{E} 2$ to a value $V 2$
3. If $V 1$ and $V 2$ are both numbers then return the arithmetic sum of $\mathbf{V 1}+\boldsymbol{V} \mathbf{2}$.
4. Otherwise, a type error occurs.

Dynamic type-checking

Addition expression: evaluation

Syntax: (+ E1 E2)

Evaluation rule:
Note recursive

1. Evaluate $E 1$ to a value $V 1$
2. Evaluate $E 2$ to a value $V 2$
3. Return the arithmetic sum of $V 1+V 2$.

Not quite!

Evaluation Assertions Formalize Evaluation

The evaluation assertion notation $\boldsymbol{E} \downarrow \boldsymbol{V}$ means
"E evaluates to V".
Our evaluation rules so far:

- value rule: $\boldsymbol{V} \downarrow \boldsymbol{V}$ (where \boldsymbol{V} is a number or boolean)
- addition rule:
if $\mathbf{E 1} \downarrow \boldsymbol{V} \mathbf{1}$ and $E \mathbf{E} \downarrow \mathbf{V} \mathbf{2}$ and V1 and V2 are both numbers and \boldsymbol{V} is the sum of $\mathbf{V} \mathbf{1}$ and $\mathbf{V} \mathbf{2}$
then $(+\boldsymbol{E 1}$ E2) $\downarrow \boldsymbol{V}$

Evaluation Derivation in English

An evaluation derivation is a "proof" that an expression evaluates to a value using the evaluation rules.
$(+3(+54)) \downarrow 12$ by the addition rule because:

- $3 \downarrow 3$ by the value rule
- $\left(+\begin{array}{ll}+ & 4\end{array}\right) \downarrow 9$ by the addition rule because:
- $5 \downarrow 5$ by the value rule
$-4 \downarrow 4$ by the value rule
- 5 and 4 are both numbers
- 9 is the sum of 5 and 4
- 3 and 9 are both numbers
- 12 is the sum of 3 and 9

Errors Are Modeled by "Stuck" Derivations

How to evaluate
(+ \#t (+ 5 4))?
$\left\lvert\, \begin{array}{llll}\# \mathrm{t} & \downarrow & \# \mathrm{t} & \text { [value] } \\ \begin{array}{llll}\begin{array}{llll}5 & \downarrow & 5 & \text { [value] } \\ 4 & \downarrow & 4 & \text { [value] } \\ (+ & 5 & 4) & \downarrow 9\end{array} \\ \text { [addition] }\end{array}\end{array}\right.$
Stuck here. Can't apply (addition) rule because \#t is not a number in (+ \#t 9)

How to evaluate

More Compact Derivation Notation

$\boldsymbol{V} \downarrow \boldsymbol{V}$ [value rule]

whereVis a value (number, boolean, etc.)

side conditions of rules \qquad Where V1 and V2 are numbers and \boldsymbol{V} is the sum of $\boldsymbol{V} \mathbf{1}$ and $\boldsymbol{V} \mathbf{2}$.

Syntactic Sugar for Addition

The addition operator + can take any number of operands.

- For now, treat (+ E1 E2 ... En) as (+ (+ E1 E2) ... En) E.g., treat $\left(+\begin{array}{llll}7 & 2 & -5 & 8\end{array}\right)$ as $\left(+\left(+\left(\begin{array}{lll}+ & 2\end{array}\right)-5\right) 8\right)$
- Treat $(+\boldsymbol{E})$ as \boldsymbol{E} (or say if $\boldsymbol{E} \downarrow \boldsymbol{V}$ then $(+\boldsymbol{E}) \downarrow \boldsymbol{V}$)
- Treat (+) as 0 (or say (+) $\downarrow 0$)
- This approach is known as syntactic sugar: introduce new syntactic forms that "desugar" into existing ones.
- In this case, an alternative approach would be to introduce more complex evaluation rules when + has a number of arguments different from 2.

Other Arithmetic Operators

Similar syntax and evaluation for

- * / quotient remainder min max
except:
- Second argument of /, quotient, remainder must be nonzero
- Result of / is a rational number (fraction) when both values are integers. (It is a floating point number if at least one value is a float.)
- quotient and remainder take exactly two arguments; anything else is an error.
- (-E) is treated as (-0 \boldsymbol{E})
- (/E) is treated as (/ $1 \boldsymbol{E}$)
- $(\min E)$ and $(\max E)$ treated as \boldsymbol{E}
- (*) evaluates to 1.
- (/), (-), (min), (max) are errors (i.e., stuck)

Conditional (if) expressions

Syntax: (if Etest Ethen Eelse)

Evaluation rule:

1. Evaluate Etest to a value Vtest.
2. If Vtest is not the value \#f then return the result of evaluating Ethen otherwise return the result of evaluating Eelse

Relation Operators

The following relational operators on numbers return booleans: <<==>=>

For example:

Where V1 and V2 are numbers and \boldsymbol{V} is \#t if $\boldsymbol{V} \mathbf{1}$ is less than $\mathbf{V} \mathbf{2}$
or \#f if $\boldsymbol{V} \mathbf{1}$ is not less than $\boldsymbol{V} \mathbf{2}$

Derivation-style rules for Conditionals
Etest \downarrow Vtest
Eelse is not
evaluated!
(if Etest Ethen Eelse) \downarrow Vthen

Where Vtest is not \#f

Your turn

Use evaluation derivations to evaluate the following expressions

```
(if (< 8 2) (+ #f 5) (+ 3 4))
(if (+ 1 2) (- 3 7) (/ 9 0))
(+ (if (< 1 2) (* 3 4) (/ 5 6)) 7)
(+ (if 1 2 3) #t)
```


Expressions vs. statements

Conditional expressions can go anywhere an expression is expected:

```
(+ 4 (* (if (< 9 (- 251 240)) 2 3) 5))
(if (if (< 1 2) (> 4 3) (> 5 6))
    (+ 7 8)
    (* 9 10)
```

Note: if is an expression, not a statement. Do other languages you know have conditional expressions in addition to conditional statements? (Many do! Java, JavaScript, Python, ...)

Design choice in conditional semantics

In the [if nonfalse] rule, Vtest is not required to be a boolean!

This is a design choice for the language designer.
What would happen if we replace the above rule by

```
Etest \ # t
Ethen \downarrow Vthen
[if true]
(if Etest Ethen Eelse) \downarrow Vthen
```

This design choice is related to notions of "truthiness" and
"falsiness" that you will explore in PS2.

Environments: Motivation

Want to be able to name values so can refer to them later by name. E.g.;

```
(define x (+ 1 2))
(define y (* 4 x))
(define diff (- y x))
(define test (< x diff))
(if test (+ (* x y) diff) 17)
```


Addition: evaluation with environment

Syntax: (+ E1 E2)

Evaluation rule:

1. evaluate $\boldsymbol{E} \mathbf{1}$ in the current environment to a value $\boldsymbol{V} \mathbf{1}$
2. Evaluate $\mathbf{E} \mathbf{2}$ in the current environment to a value V2
3. If $V 1$ and $V 2$ are both numbers then return the arithmetic sum of $V 1+V 2$.
4. Otherwise, a type error occurs.

Environments: Definition

- An environment is a sequence of bindings that associate identifiers (variable names) with values.
- Concrete example:

```
num\mapsto 17, absoluteZero \mapsto -273, true \mapsto#t
```

- Abstract Example (use Id to range over identifiers = names):
$\mathrm{Id} 1 \mapsto \mathrm{~V} 1, \mathrm{Id} 2 \mapsto \mathrm{~V} 2, \ldots, \mathrm{Idn} \mapsto \mathrm{Vn}$
- Empty environment: \varnothing
- An environment serves as a context for evaluating expressions that contain identifiers.
- Second argument to evaluation, which takes both an expression and an environment.

Variable references

Syntax: Id
Id: any identifier
Evaluation rule:
Look up and return the value to which $I d$ is bound in the current environment.

- Look-up proceeds by searching from the most-recently added bindings to the least-recently added bindings (front to back in our representation)
- If $I d$ is not bound in the current environment, evaluating it is "stuck" at an unbound variable error.

Examples:

- Suppose env is num $\mapsto 17$, absZero $\mapsto-273$, true \mapsto \#t, num $\mapsto 5$
- In env, num evaluates to 17 (more recent than 5), absZero evaluates to -273, and true evaluates to \#t. Any other name is stuck.

define Declarations

Syntax: (define Id E)

define: keyword
Id: any identifier
\boldsymbol{E} : any expression
This is a declaration, not an expression!
We will say a declarations are processed, not evaluated

Processing rule:

1. Evaluate \boldsymbol{E} to a value \boldsymbol{V} in the current environment
2. Produce a new environment that is identical to the current environment, with the additional binding $I d \rightarrow V$ at the front. Use this new environment as the current environment going forward.

Evaluation Assertions \& Rules with Environments

The evaluation assertion notation E \# env $\downarrow \boldsymbol{V}$ means
"Evaluating expression \boldsymbol{E} in environment env yields value \boldsymbol{V} ".

Id \# env \downarrow V [varref]

Where Id is an identifier and $I d \longmapsto V$ is the first binding in env for Id Only this rule actually uses env; others just pass it along

$\boldsymbol{V} \#$ env $\downarrow V$ [value]

where \boldsymbol{V} is a value (number, boolean, etc.)

```
E1 # env \downarrow #f
```

E3 \# env \downarrow V3

Where $\mathbf{V} \mathbf{1}$ and $\mathbf{V} \mathbf{2}$ are numbers and \boldsymbol{V} is the sum of $\mathbf{V} \mathbf{1}$ and \mathbf{V} 2. Rules for other arithmetic and relational ops are similar.

$\begin{aligned} & \text { E1 \# env } \downarrow \text { V1 } \\ & \text { E2 \# env } \downarrow \text { V2 } \end{aligned}$	[if nonfalse]
(if E1 E2 E3)	
Where V1 is not \#f	Expr/

Environments: Example

env0 $=\varnothing$ (can write as. in text)

```
(define x (+ 1 2))
```

 env1 = \(x \longmapsto 3, ~ \emptyset(\) abbreviated \(x \longmapsto 3\); can write as \(x->3\) in text)
 (define y (* 4 x))
env2 $=y \mapsto 12, x \mapsto 3$ (most recent binding first)
(define diff (- y x))
env3 = diff $\longmapsto 9, y \mapsto 12, x \longmapsto 3$
(define test (< x diff))
env4 $=$ test $\longmapsto \# t, \operatorname{diff} \mapsto 9, y \mapsto 12, x \mapsto 3$
(if test (+ (* x 5) diff) 17)
environment here is still env4
(define x (* x y))
env5 = x $\longmapsto 36$, test $\longmapsto \# t$, diff $\longmapsto 9, y \mapsto 12, x \mapsto 3$
Note that binding $x \mapsto 36$ "shadows" $x \mapsto 3$, making it inaccessible ${ }_{\text {Expr/decl } 30}$

Example Derivation with Environments

Suppose env4 = test $\longmapsto \# t, \operatorname{diff} \mapsto 9, \mathrm{y} \longmapsto 12, \mathrm{x} \mapsto 3$

test \# env4 \downarrow \#t [varref]	
x \# env4 $\downarrow 3$ [varref]	
5 \# env4 $\downarrow 5$ [value]	
(* x 5) \# env4 $\downarrow 15$ [multiplication]	
diff \#env4 $\downarrow 9$ [varref]	
(+ (* x 5) diff) \# env4 $\downarrow 24$	
(if test (+ (* x 5) diff) 17)\# env	

Conclusion-below-subderivations, in text

```
Suppose env4 = test -> #t, diff -> 9, y -> 12, x -> 3
| test # env4 \downarrow #t [varref]
| | | x # env4 \ 3 [varref]
| | 5 # env4 | 5 [value]
| | ------------------- [multiplication]
| (* x 5) # env4 \downarrow 15
| | diff # env4 | 9 [varref]
| | ------------------------ [addition]
| (+ (* x 5) diff)# env4 \downarrow 24
---------------------------------------[if nonfalse]
(if test (+ (* x 5) diff) 17)# env4 \downarrow 24
```


Formalizing definitions

The declaration assertion notation (define Id \boldsymbol{E}) \#env \Downarrow env' means "Processing the definition (define Id \boldsymbol{E}) in environment env yields a new environment env'". We use a different arrow, \downarrow, to emphasize that definitions are not evaluated to values, but processed to environments.

Conclusion-above-subderivations, with bullets

```
Suppose env4 = test -> #t, diff -> 9, y -> 12, x -> 3
(if test (+ (* x 5) diff) 17)# env4 \downarrow 24 [if nonfalse]
\square test # env4 \downarrow #t [varref]
\square (+ (* x 5) diff)# env4 \downarrow 24 [addition]
    O (* x 5) # env4 \downarrow 15 [multiplication]
        - x # env4 \downarrow 3 [varref]
        - 5 # env4 \downarrow 5 [value]
    o diff # env4 \downarrow 9 [multiplication]
```


Threading environments through definitions

[^0]
Racket Identifiers

- Racket identifiers are case sensitive. The following are four different identifiers: $\mathrm{ABC}, \mathrm{Abc}, \mathrm{aBc}, \mathrm{abc}$
- Unlike most languages, Racket is very liberal with its definition of legal identifers. Pretty much any character sequence is allowed as identifier with the following exceptions:
- Can't contain whitespace
- Can't contain special characters () [] \{\}",' `;\#|
- Can't have same syntax as a number
- This means variable names can use (and even begin with) digits and characters like! @\$\%^\&*.-+ :<=>?/ E.g.:
- myLongName, my_long__name, my-long-name
- is_a+b<c*d-e?
- 76Trombones
- Why are other languages less liberal with legal identifiers?

Small-step semantics: intuition

Scan left to right to find the first redex (nonvalue subexpression that can be reduced to a value) and reduce it:

$$
\left.\left.\begin{array}{l}
\left(-\left(* \begin{array}{lll}
+ & 2 & 3
\end{array}\right) 9\right) \quad(/ 18 \quad 6
\end{array}\right)\right)
$$

Small-step vs. big-step semantics

The evaluation derivations we've seen so far are called a big-step semantics because the derivation e \# env $2 \downarrow v$ explains the evaluation of e to v as one "big step" justified by the evaluation of its subexpressions.

An alternative way to express evaluation is a small-step semantics in which an expression is simplified to a value in a sequence of steps that simplifies subexpressions. You do this all the time when simplifying math expressions, and we can do it in Racket, too. E.g;

```
(- (* (+ 2 3) 9) (/ 18 6))
=>(- (* 5 9) (/ 18 6))
=>(-45 (/ 18 6))
# (- 45 3)
C42
```


Small-step semantics: reduction rules

There are a small number of reduction rules for Racket. These specify the redexes of the language and how to reduce them.

The rules often require certain subparts of a redex to be (particular kinds of) values in order to be applicable.

```
Id =>}V\mathrm{ , where Id }\mapstoV\mathrm{ is the first binding for Id
    in the current environment* [varref]
```

(+ V1 V2) $\Rightarrow V$, where V is the sum of numbers $V 1$ and $V 2$ (addition) There are similar rules for other arithmetic/relational operators
(if Vtest Ethen Eelse) \Rightarrow Ethen, if Vtest is not \#f [if nonfalse]
(if \#f Ethen Eelse) \Rightarrow Eelse [if false]

* In a more formal approach, the notation would make the environment explicit. E.g., E \# env \Rightarrow V

Small-step semantics: conditional example

$$
\begin{aligned}
& (+(\text { if (< 1 2) }(* 34)(/ 56)) 7) \\
& \Rightarrow(+(\text { if \#t (* } 34)(/ 56)) 7) \\
& \Rightarrow\left(+\binom{*}{\hline} 7\right) \\
& \Rightarrow(+127) \\
& \Rightarrow 19
\end{aligned}
$$

Small-step semantics: errors as stuck expressions

Similar to big-step semantics, we model errors (dynamic type errors, divide by zero, etc.) in small-step semantics as expressions in which the evaluation process is stuck because no reduction rule is matched. For example

$$
\begin{aligned}
& \text { (- (* (+ 2 3) \#t) (/ } 18 \text { 6)) } \\
& \Rightarrow(-(* 5 \text { \#t) (/ } 18 \text { 6)) } \\
& \text { (if }(=2(/(+34)(-55))) 89) \\
& \Rightarrow(\text { if }(=2(/ 7(-55))) 89) \\
& \Rightarrow \text { (if }(=2(/ 70) \text { 9) }
\end{aligned}
$$

Racket Documentation

Racket Guide:
https://docs.racket-lang.org/guide/

Racket Reference:
https://docs.racket-lang.org/reference

[^0]: a \# b $\mapsto 25$, a $\mapsto 5 \downarrow 25$ [varref]
 a \# b $\mapsto 25$, a $\mapsto 5 \downarrow 5$ [varref]
 (-ba)\#b $\mapsto 25$, a $\mapsto 5 \downarrow 20$

