Higher-Order List Functions
in Racket

Languages

CS251 Programming

Spring 2017, Lyn Turbak

Department of Computer Science
Wellesley College

Higher-order List Functions

A function is higher-order if it takes another
function as an input and/or returns another
function as a result. E.g. app-3-5,
make-linear-function, flip2.

We will now study higher-order list functions
that capture the recursive list processing
patterns we have seen.

6-2

Recall the List Mapping Pattern

(mapF (list v1 v2 .. vn))

vl v2 eee

vn

(Fvi) (Fv2)

(F vn)

(define (mapF xs)
(1f (null? xs)
null

(cons (F (first xs))

(mapF (rest xs)))))

6-3

Express Mapping via Higher-order my-map

(define (my-map £ xs)
(i1f (null? xs)
null
(cons (£ (first xs))

(my-map £ (rest xs)))))

6-4




my-map Examples

> (my-map (A (x) (* 2 x)) (list 7 2 4))
> (my-map first (list (list 2 3) (list 4) (list 5 6 7)))
> (my-map (make-linear-function 4 7) (list 0 1 2 3))

> (my-map app-3-5 (list sub2 + avg pow (flip pow)
make-linear-function))

Your turn

(map-scale n nums) returns a list that results from scaling
each number in nums by n.

> (map-scale 3 (list 7 2 4))
(21 6 12)

> (map-scale 6 (range 0 5))
"(0 6 12 18 24)

6-5 6-6
Currying Mapping with binary functions
A curried binary function takes one argument at a time. (define (my-map2 binop xs ys)
(define (curry2 binop) (if (not (= (length xs) (length ys)))
(A (x) (A (y) (binop x y))) (error "my-map2 requires same-length lists")
(if (or (null? xs) (null? ys))
(define curried-mul (curry2 *))
null
> ((curried-mul 5) 4) Haskell Curry (cons (binop (first xs) (first ys))
> (my-map (curried-mul 3) (list 1 2 3)) (my-map2 binop (rest xs) (rest ys))))))
> (my-map ((curry2 pow) 4) (list 1 2 3)) > (my-map2 pow (list 2 3 5) (list 6 4 2))
> (my-map ((curry2 (flip2 pow)) 4) (list 1 2 3)) ' (64 81 25)
> (define lol (list (list 2 3) (list 4) (list 5 6 7))) > (my-map2 cons (list 2 3 5) (list 6 4 2))
'((2 . 6 3 . 4 5.2
> (map ((curry2 cons) 8) lol) t ) ) )
> (map (222 8) lol) > (my-map2 cons (list 2 3 4 5) (list 6 4 2))
*((2 38) (48) (56717 8)) ERROR: my-map2 requires same-length lists
6-7 6-8




Built-in Racket map Function
Maps over Any Number of Lists

> (map (A (x) (* x 2)) (range 1 5))
'(2 4 6 8)

> (map pow (list 2 3 5) (list 6 4 2))
'(64 81 25)
> (map (A (a b x) (+ (* a x) b))
(list 2 3 5) (list 6 4 2) (list 0 1 2))
(6 7 12)

> (map pow (list 2 3 4 5) (list 6 4 2))

ERROR: map: all lists must have same size;

arguments were: #<procedure:pow> '(2 3 4 5) '(6 4 2)

6-9

Recall the List Filtering Pattern

(filterP (list vl v2 .. vn))

vl v2 Xyl vn ——0
e g e
(P) \P) (P)
#t # X #t

v v

vl eee — > yn| ——>@

(define (filterP xs)
(1f (null? xs)
null
(1f (P (first xs))
(cons (first xs) (filterP (rest xs)))
(filterP (rest xs)))))

6-10

Express Filtering via Higher-ordermy-filter

(define (my-filter pred xs)
(if (null? xs)
null
(if (pred (first xs))

(cons (first xs)

(my-filter pred (rest xs)))))

(my-filter pred (rest xs)))

Built-in Racket £ilter function acts just likemy-filter

6-11

filter Examples
(filter (A (x) (> x 0)) (list 7 -2 -4 8 5))

(filter (A (n) (= 0 (remainder n 2)))
(list 7 -2 -4 8 5))

(filter (A (xs) (>= (len xs) 2))
(list (list 2 3) (list 4) (list 5 6 7))

(filter number?
(list 17 #t 3.141 "a" (list 1 2) 3/4 5+61))

(filter (lambda (binop) (>= (app-3-5 binop)

(app-3-5 (flip2 binop))))

(list sub2 + * avg pow (flip2 pow)))

6-12




Recall the Recursive List Accumulation Pattern

(recf (list vl v2 .. vn))
V V2 (XY} vn — >0
\Awn nullval
(combine’
h comblne
combme

(define (rec—-accum xs)
(if (null? xs)
nullval

(combine (first xs)
(rec—-accum (rest xs)))))

Express Recursive List Accumulation via
Higher-order my-foldr

(define (my-foldr combine nullval xs)
(1f (null? xs)
nullval
(combine (first xs)
(my-foldr combine
nullval
(rest xs)))))

6-13 6-14
my-foldr Examples More my—-foldr Examples
> (my-foldr + 0 (list 7 2 4)) > (my-foldr (A (a b) (and a b)) #t (list #t #t #t))
> (my-foldr * 1 (list 7 2 4))
> (my-foldr (A (a b) (and a b)) #t (list #t #£f #t))
> (my-foldr - 0 (list 7 2 4))
> (my—foldr min +inf.0 (llSt 7 2 4)) > (my—foldr ()\ (a b) (or a b)) #£f (llSt #t #£ #t))
> (my-foldr max -inf.0 (list 7 2 4))
> (my-foldr (A (a b) (or a b)) #f (list #f #f #f))
> (my-foldr cons (list 8) (list 7 2 4))
;7 This doesn’t work. Why not?
> (my-foldr append null _
(list (list 2 3) (list 4) (1ist 5 6 7))) > (my-foldr and #t (list #t #t #t))
6-15 6-16




Mapping & Filtering in terms of my-foldr

(define (my-map f xs)
(my-foldr 2727

s

Xs))

(define (my-filter pred xs)
(my-foldr 2727

227

Xs))

6-17

Built-in Racket foldr Function
Folds over Any Number of Lists

> (foldr + 0 (list 7 2 4))

13

> (foldr (lambda (a b sum) (+ (* a b) sum))
0
(list 2 3 4)
(list 5 6 7))

56

> (foldr (lambda (a b sum) (+ (* a b) sum))
0
(list 1 2 3 4)
(list 5 6 7))

ERROR: foldr: given list does not have the same size

as the first list: '"(5 6 7)

6-18




