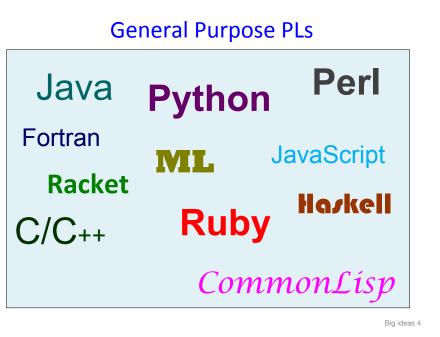
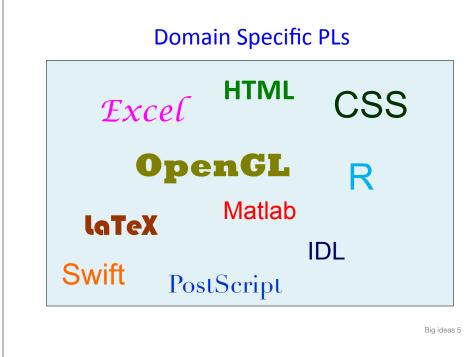
Big Ideas for CS 251 Theory of Programming Languages Principles of Programming Languages

CS251 Programming Languages Spring 2018, Lyn Turbak

Department of Computer Science Wellesley College

Programming Languages


- What is a PL?
- Why are new PLs created?
 - What are they used for?
 - Why are there so many?
- Why are certain PLs popular?
- What goes into the design of a PL?
 - What features must/should it contain?
 - What are the design dimensions?
 - What are design decisions that must be made?
- Why should you take this course? What will you learn?


Big ideas 2

PL is my passion!

- First PL project in 1982 as intern at Xerox PARC
- Created visual PL for 1986 MIT masters thesis
- 1994 MIT PhD on PL feature (synchronized lazy aggregates)
- 1996 2006: worked on types as member of Church project
- 1988 2008: Design Concepts in Programming Languages
- 2011 current: lead TinkerBlocks research team at Wellesley
- 2012 current: member of App Inventor development team

Programming Languages: Linguistic View

A computer language ... is a novel formal medium for expressing ideas about methodology, not just a way to get a computer to perform operations. Programs are written for people to read, and only incidentally for machines to execute.

- Harold Abelson and Gerald J. Sussman

Programming Languages: Mechanical View

A computer is a machine. Our aim is to make the machine perform some specified actions. With some machines we might express our intentions by depressing keys, pushing buttons, rotating knobs, etc. For a computer, we construct a sequence of instructions (this is a ``program'') and present this sequence to the machine.

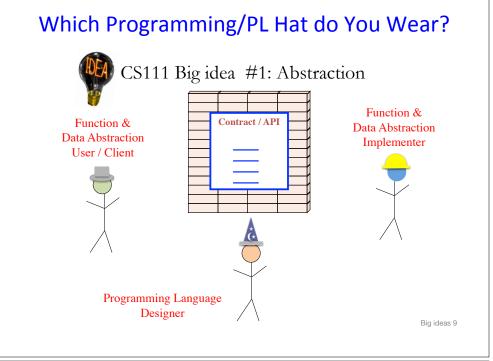
- Laurence Atkinson, Pascal Programming

Big ideas 6

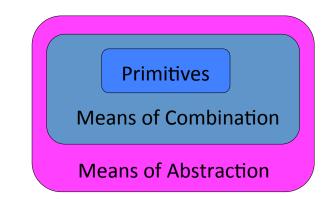
"Religious" Views

The use of COBOL cripples the mind; its teaching should, therefore, be regarded as a criminal offense. – *Edsger Dijkstra*

It is practically impossible to teach good programming to students that have had a prior exposure to BASIC: as potential programmers they are mentally mutilated beyond hope of regeneration. – *Edsger Dijstra*


You're introducing your students to programming in C? You might as well give them a frontal lobotomy! – *A colleague of mine*

A LISP programmer knows the value of everything, but the cost of nothing. - *Alan Perlis*


I have never met a student who cut their teeth in any of these languages and did not come away profoundly damaged and unable to cope. I mean this reads to me very similarly to teaching someone to be a carpenter by starting them off with plastic toy tools and telling them to go sculpt sand on the beach. - *Alfred Thompson, on blocks languages*

A language that doesn't affect the way you think about programming, is not worth knowing. - *Alan Perlis*

Big ideas 7

Programming Language Essentials

Think of the languages you know. What means of abstraction do they have?

Big ideas 10

PL Parts

Syntax: form of a PL

- What a P in a given L look like as symbols?
- Concrete syntax vs abstract syntax trees (ASTs)

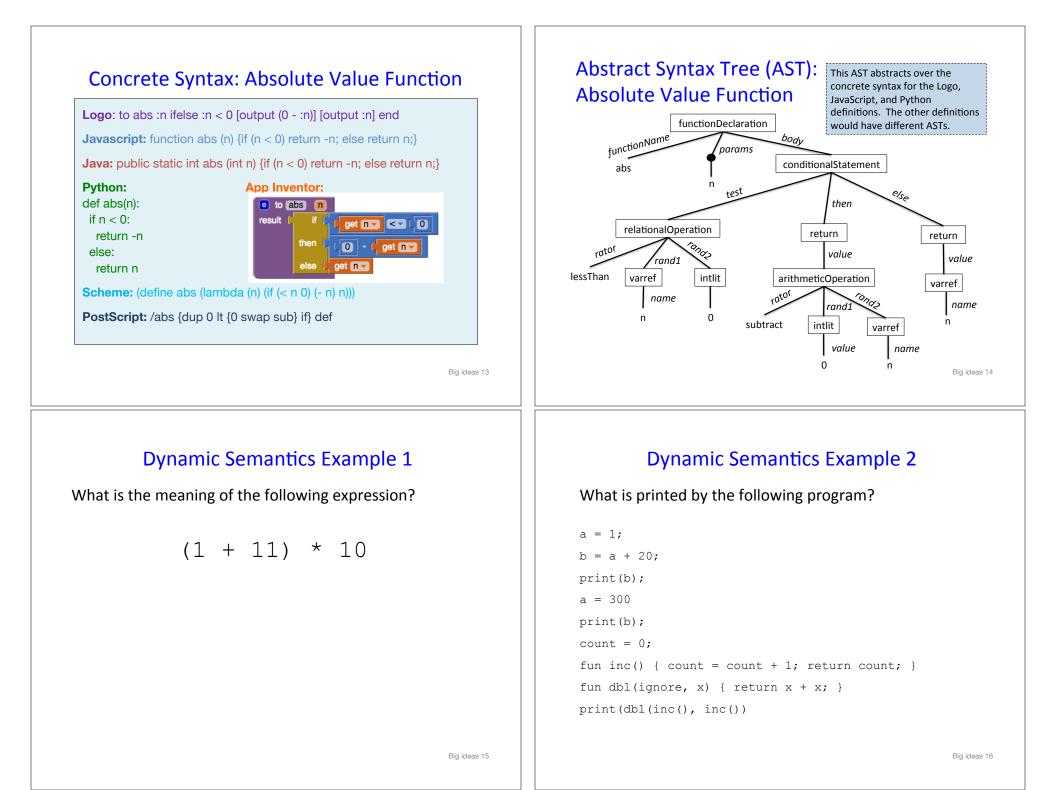
Semantics: meaning of a PL

- *Dynamic Semantics*: What is the behavior of P? What actions does it perform? What values does it produce?
 - Evaluation rules: what is the result or effect of evaluating each language fragment and how are these composed?
- Static Semantics: What can we tell about P before running it?
 - Scope rules: to which declaration does a variable reference refer?
 - Type rules: which programs are well-typed (and therefore legal)?

Pragmatics: implementation of a PL (and PL environment)

· How can we evaluate programs in the language on a computer?

Big ideas 11


· How can we optimize the performance of program execution?

Syntax (Form) vs. Semantics (Meaning) in Natural Language

Furiously sleep ideas green colorless.

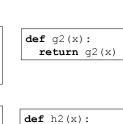
Colorless green ideas sleep furiously.

Little white rabbits sleep soundly.

Dynamic Semantics Example 3

Suppose a is an array (or list) containing the three integer values 10, 20, and 30 in the following languages. What is the meaning of the following expressions/ statements in various languages (the syntax might differ from what's shown).

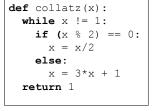
	a[1]	a[3]	a[2] = "foo"	a[3] = 17
Java				
С				
Python				
JavaScript				
Pascal				
App Inventor				
How do you de	etermine	e the answers???		


Static Semantics Example 2: Detecting Loops

Which of these Python programs has inputs for which it loops forever?

def g(x):			
while True:			
pass			
return x			

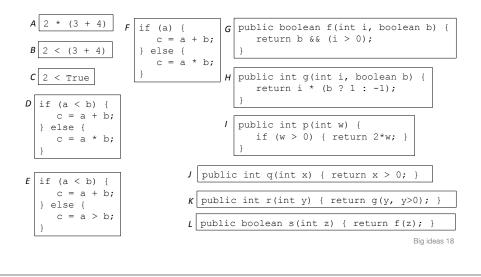
def h(x):
 while x > 0:
 x = x+1
 return x


if x <= 0:

else:

return x

return h(x+1)



Big ideas 19

Big ideas 17

Static Semantics Example 1: Type Checking

Which of the following Java examples can be well-typed (i.e., pass the type checker)? How do you know? What assumptions are you making?

Static Semantics and Uncomputability

It is generally **impossible** to answer any interesting question about static program analysis!

This is a consequence of Rice's Theorem (see CS235).

For example, will this program ever:

- · halt on certain inputs
- · encounter an array index out of bounds error?
- throw a NullPointerException?
- access a given object again?
- · send sensitive information over the network?
- divide by 0?
- run out of memory, starting with a given amount available?
- try to treat an integer as an array?

Big ideas 20

The Church-Turing Thesis and Turing-Completeness

- **Church-Turing Thesis**: Computability is the common spirit embodied by this collection of formalisms.
- This thesis is a claim that is widely believed about the intuitive notions of algorithm and effective computation. It is not a theorem that can be proved.
- Because of their similarity to later computer hardware, Turing machines (CS235) have become the gold standard for effectively computable.
- We'll see in CS251 that Church's lambda-calculus formalism is the foundation of modern programming languages.
- A consequence: programming languages all have the "same" computational "power" in term of what they can express. All such languages are said to be **Turing-complete**.

Big ideas 21

Expressiveness and Power

- About:
 - ease
 - elegance
 - clarity
 - modularity
 - abstraction

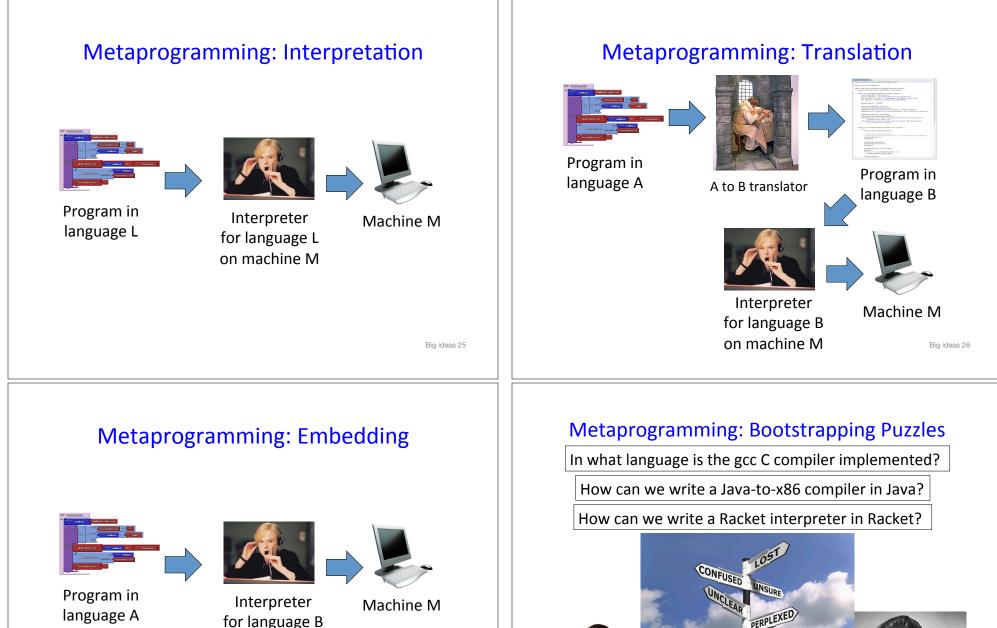
- ...

- Not about: computability
- Different problems, different languages
 - Facebook or web browser in assembly language?

Big ideas 22

Pragmatics: Raffle App In App Inventor

http://d2.appinventor.mit.edu
Designer Window
Image: Construction of the state of the st


Pragmatics: Metaprogramming

PLs are implemented in terms of **metaprogams** = programs that manipulate other programs.

This may sound weird, but programs are just trees (ASTs), so a metaprogram is just a program that manipulates trees (think a more complex version of CS230 binary tree programs).

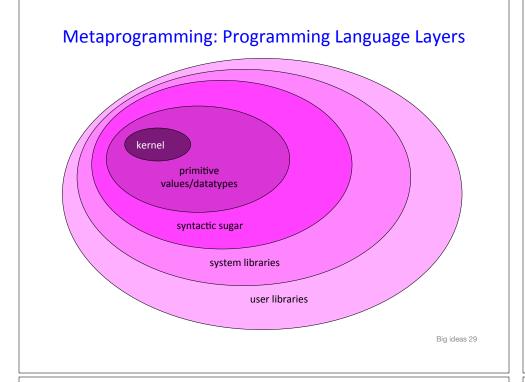
Implementation strategies:

- Interpretation: interpret a program P in a source language S in terms of an implementation language I.
- Translation (compilation): translate a program P in a source language S to a program P' in a target language T using a translator written in implementation language I.
- **Embedding**: express program P in source language S in terms of data structures and functions in implementation language I.

Big ideas 27

embedded in language B

for language B


on machine M

DISORIENTED BEWILDERED

We'll learn how to understand such puzzles!

Big ideas 28

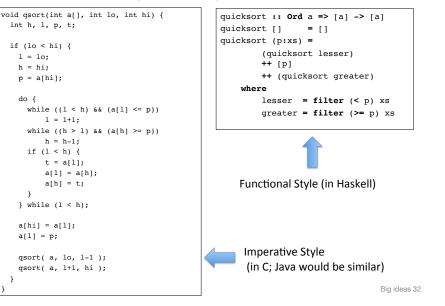
PL Dimensions

PLs differ based on decisions language designers make in many dimensions. E.g.:

- First-class values: what values can be named, passed as arguments to functions, returned as values from functions, stored in data structures. Which of these are first-class in your favorite PL: arrays, functions, variables?
- **Naming**: Do variables/parameters name expressions, the values resulting from evaluating expressions, or mutable slots holding the values from evaluating expressions? How are names declared and referenced? What determines their scope?
- **State**: What is mutable and immutable; i.e., what entities in the language (variables, data structures, objects) can change over time.
- Control: What constructs are there for control flow in the language, e.g. conditionals, loops, non-local exits, exception handling, continuations?
- **Data**: What kinds of data structures are supported in the language, including products (arrays, tuples, records, dictionaries), sums (options, oneofs, variants), sum-of-products, and objects.
- **Types**: Are programs statically or dynamically typed? What types are expressible?

Big ideas 30

Programming Paradigms


- *Imperative (e.g. C, Python)*: Computation is step-by-step execution on a stateful abstract machine involving memory slots and mutable data structures.
- *Functional, function-oriented* (*e.g Racket, ML, Haskell*): Computation is expressed by composing functions that manipulate immutable data.
- **Object-oriented** (e.g. Simula, Smalltalk, Java): Computation is expressed in terms of stateful objects that communicate by passing messages to one another.
- Logic-oriented (e.g. Prolog): Computation is expressed in terms of declarative relationships.

Note: In practice, most PLs involve multiple paradigms. E.g.

- Python supports functional features (map, filter, list comprehensions) and objects
- Racket and ML have imperative features.

Big ideas 31

Paradigm Example: Quicksort

Why? Who? When? Where? Design and Application

- Historical context
- Motivating applications
 - Lisp: symbolic computation, logic, AI, experimental programming
 - ML: theorem-proving, case analysis, type system
 - C: Unix operating system
 - Simula: simulation of physical phenomena, operations, objects
 - Smalltalk: communicating objects, user-programmer, pervasiveness
- Design goals, implementation constraints
 - performance, productivity, reliability, modularity, abstraction, extensibility, strong guarantees, ...
- · Well-suited to what sorts of problems?

Big ideas 33

Why study PL?

- Crossroads of CS
- Approach problems as a language designer.
 - "A good programming language is a conceptual universe for thinking about programming" -- Alan Perlis
 - Evaluate, compare, and choose languages
 - Become better at learning new languages
 - Become a better programmer by leveraging powerful features (first-class functions, tree recursion, sum-of-product datatypes, pattern matching)
 - You probably won't design a general-purpose PL, but might design a DSL
 - view API design as language design
- Ask:
 - Why are PLs are the way they are?
 - How could they (or couldn't they) be better?
 - What is the cost-convenience trade-off for feature X?

Big ideas 34

Administrivia

- Schedule, psets, quizzes, lateness policy, etc.: see <u>http://cs.wellesley.edu/~cs251/</u>.
- Do PS0 tonight
 - Fill out "get to know you" form
 - Review course syllabus and policies (we'll go over these tomorrow)
 - Read Wed slides on "big-step semantics" of Racket
 - Install Dr. Racket
- PS1 is available; due next Friday
- Visit me in office hours before next Friday!

1-35