Introduction to Racket, a dialect of LISP:
Expressions and Declarations

CS251 Programming Languages
Spring 2018, Lyn Turbak

Department of Computer Science
Wellesley College

These slides build on Ben Wood'’s Fall 15 slides

LISP: designed by John McCarthy, 1958
published 1960

Expr/decl 2

LISP: implemented by Steve Russell,
early 1960s

Expr/decl 3

LISP: LISt Processing

* McCarthy, MIT artificial intelligence, 1950s-60s
— Advice Taker: represent logic as data, not just

program
ﬁ Emacs: M-x doctor]

* Needed a language for:
— Symbolic computation Y{ _ _ _]
) . i i.e., not just number crunching
— Programming with logic
— Artificial intelligence
— Experimental programming

* So make one!

Expr/decl 4

Scheme

* Gerald Jay Sussman and
Guy Lewis Steele (mid 1970s)

* Lexically-scoped dialect of LISP

that arose from trying to make
an “actor” language.

* Described in amazing “Lambda the Ultimate”
papers (http://library.readscheme.org/pagel.html)
— Lambda the Ultimate PL blog inspired by these:
http://lambda-the-ultimate.org
* Led to Structure and Interpretation
of Computer Programs (SICP) and
MIT 6.001 (https://mitpress.mit.edu/sicp/)

Expr/decl 5

Grandchild of LISP (variant of Scheme)
— Some changes/improvements, quite similar
Developed by the PLT group

(https://racket-lang.org/people.html), the same folks who
created Drlava.

Why study Racket in CS2517?

— Clean slate, unfamiliar
Careful study of PL foundations (“PL mindset”)
Functional programming paradigm

* Emphasis on functions and their composition
* Immutable data (lists)

Beauty of minimalism
Observe design constraints/historical context

Expr/decl 6

Expressions, Values, and Declarations

* Entire language: these three things

* Expressions have evaluation rules:
— How to determine the value denoted by an expression.

* For each structure we add to the language:
— What is its syntax? How is it written?

— What is its evaluation rule? How is it evaluated to a
value (expression that cannot be evaluated further)?

Expr/decl 7

Values

Values are expressions that cannot be evaluated
further.

Syntax:
— Numbers: 251, 240, 301
— Booleans: #t, #£

— There are more values we will meet soon
(strings, symbols, lists, functions, ...)

Evaluation rule:
— Values evaluate to themselves.

Expr/decl 8

Addition expression: syntax

Adds two numbers together.

Syntax: (+ E1 E2)
Every parenthesis required; none may be omitted.
E1 and E2 stand in for any expression.

Note recursive
structure!

Note prefix notation.

Examples:
(+ 251 240)
(+ (+ 251 240) 301)
(+ #t 251)

Expr/decl 9

Addition expression: evaluation

Syntax: (+ E1 E2)

Note recursive
Evaluation rule: structure!

1. Evaluate EI to a value V1
2. Evaluate E2 to a value V2
3. Return the arithmeticsum of V1 + V2.

Expr/decl 10

Addition: dynamic type checking
Syntax: (+ E1 EZ2)

Still not quite!

Evaluation rule:
1. evaluate E1 to a value V1
2. Evaluate E2to a value V2

3. If V1 and V2 are both numbers then
return the arithmetic sum of V1 + V2.

More later ...

4. Otherwise, a type error occurs.

Dynamic type-checking

Expr/decl 11

Evaluation Assertions Formalize Evaluation

The evaluation assertion notation E | V means
“Eevaluatesto V”.

Our evaluation rules so far:
* value rule: V | V (where Vis a number or boolean)

e addition rule:

if E1] V1 and E2 | V2
and V1and V2 are both numbers
and Vis the sum of V1 and V2
then (+ E1 E2) |V

Expr/decl 12

Evaluation Derivation in English

An evaluation derivation is a ““proof "’ that an expression
evaluates to a value using the evaluation rules.

(+ 3 (+ 5 4)) | 12 bythe addition rule because:

3 | 3 bythevaluerule

(+ 5 4) | 9 bythe addition rule because:

— 5 | 5 bythevaluerule
— 4 | 4 bythevaluerule

— 5 and 4 are both numbers

— 9isthesumof 5 and 4
3 and 9 are both numbers

12 isthe sum of 3 and 9

Expr/decl 13

More Compact Derivation Notation

V | Vvalue rule] E1| V1
, E2 | v2 .
whereVis a value [addition rule]
(number, boolean, etc.) (+ E1 E2) |V

f

side conditions of rules Where V1 and V2 are numbers and

Vis the sum of V1 and V2.

3 | 3 [value]
5 | 5 [value]
4 | 4 [value] raddition]
(+ 54)]9
[addition]

(+ 3 (+ 5 4))] 12

Expr/decl 14

Errors Are Modeled by “Stuck” Derivations

How to evaluate
(+ #t (+ 5 4))?

#t | #t [value]
5 | 5 [value]

4 | 4 [value]

[addition]

(+ 5 4) |9

Stuck here. Can’t apply
(addition) rule because
#t is not a number in
(+ #t9)

How to evaluate
(+ (+ 1 2) (+ 5 #£))?

1 | 1 [value]

2 | 2 [value]

(+ 1 2) | 3 [addition]
5 | 5 [value]

#£ | #£ [value]

Stuck here. Can’t apply
(addition) rule because
#f is not a number in
(+5 #f)

Expr/decl 15

Syntactic Sugar for Addition

The addition operator + can take any number of operands.

For now, treat (+ E1 E2 .. En)as (+ (+ E1 E2) .. En)
E.g,treat (+ 7 2 -5 8) as (+ (+ (+ 7 2) -5) 8)

Treat (+ E)asE (orsayif E|V then (+ E) | V)
Treat (+) as O (orsay (+)] 0)

This approach is known as syntactic sugar: introduce new
syntactic forms that “desugar” into existing ones.

In this case, an alternative approach would be to introduce
more complex evaluation rules when + has a number of
arguments different from 2.

Expr/decl 16

Other Arithmetic Operators

Similar syntax and evaluation for
- * / quotient remainder min max
except:

* Second argument of /, quotient, remainder
must be nonzero

* Result of / is a rational number (fraction) when both values are
integers. (It is a floating point number if at least one value
is a float.)

* quotient and remainder take exactly two arguments;
anything else is an error.

e (- E) istreatedas (- 0 E)

e (/ E) istreatedas (/ 1 E)

e (min E) and (max E) treatedasE

* (*) evaluatesto 1.

* (/), (-), (min) , (max) are errors (i.e., stuck)

Expr/decl 17

Relation Operators

The following relational operators on numbers return
booleans: < <= = >= >

For example:

E1| V1
E2| V2

(< E1 E2) |V

[less than]

Where V1 and V2 are numbers and
Vis #t if V1is less than V2
or #f if V1 is not less than V2

Expr/decl 18

Conditional (if) expressions

Syntax: (1if Etest Ethen Eelse)

Evaluation rule:
1. Evaluate Etest to avalue Vtest.

2. If Vtestis not the value #£ then
return the result of evaluating Ethen
otherwise
return the result of evaluating Eelse

Expr/decl 19

Derivation-style rules for Conditionals

Etest | Vtest
Ethen | Vthen .. fisel

(1f Etest Ethen Eelse) | Vthen

Eelse is not
evaluated!

Where Vtest is not #f

Etest | #f

Eelse | Velse fif false] Ethen is not
(1f Etest Ethen Eelse) | Velse evaluated!

Expr/decl 20

Your turn

Use evaluation derivations to evaluate the
following expressions

(if (< 8 2) (+ #f£ 5) (+ 3 4))
(if (+ 1 2) (-3 7) (/9 0))
(+ (if (<1 2) (* 3 4) (/ 5 6)) 7)

(+ (if 1 2 3) #t)

Expr/decl 21

Expressions vs. statements

Conditional expressions can go anywhere an
expression is expected:

(+ 4 (* (if (< 9 (- 251 240)) 2 3) 5))

(if (if (< 1 2) (> 4 3) (> 5 6))
(+ 7 8)
(* 9 10)

Note: i f is an expression, not a statement. Do
other languages you know have conditional
expressions in addition to conditional statements?

(Many do! Java, JavaScript, Python, ...)

Expr/decl 22

Conditional expressions: careful!

Unlike earlier expressions, not all
subexpressions of if expressions are evaluated!

(if (> 251 240) 251 (/ 251 0))

(if #f (+ #t 240) 251)

Expr/decl 23

Design choice in conditional semantics

In the [if nonfalse] rule, Vtest is not required to be a boolean!

‘ Etest | Vtest
Ethen | Vthen it honfalse]

(1f Etest Ethen Eelse) | Vthen

Where Vtest is not #f

This is a design choice for the language designer.
What would happen if we replace the above rule by

Etest | #t
Ethen | Vthen [if true]

(1f Etest Ethen Eelse) | Vthen

This design choice is related to notions of “truthiness” and

“falsiness” that you will explore in PS2. Expr/dec] 24

Environments: Motivation

Want to be able to name values so can refer to
them later by name. E.g.;

(define x (+ 1 2))
(define y (* 4 x))
(define diff (- y x))
(define test (< x diff))

(1f test (+ (* x y) diff) 17)

Expr/decl 25

Environments: Definition

* An environment is a sequence of bindings that
associate identifiers (variable names) with values.
— Concrete example:
num+— 17, absoluteZero +— -273, true —#t

— Abstract Example (use Id to range over identifiers = names):
Idi — VI1,Id2— V2, ..., Idn— Vn

— Empty environment: @

* An environment serves as a context for evaluating
expressions that contain identifiers.

* Second argument to evaluation, which takes both an
expression and an environment.

Expr/decl 26

Addition: evaluation with environment

Syntax: (+ E1 E2)

Evaluation rule:
1. evaluate E1 in the current environment to a value V1
2. Evaluate E2in the current environment to a value V2

3. If v1 and V2 are both numbers then
return the arithmetic sum of V1 + V2.

4. Otherwise, a type error occurs.

Expr/decl 27

Variable references

Syntax: Id
Id: any identifier

Evaluation rule:
Look up and return the value to which Idis bound in the current
environment.

* Look-up proceeds by searching from the most-recently added
bindings to the least-recently added bindings (front to back in our
representation)

e If Idis not bound in the current environment, evaluating it is “stuck”
at an unbound variable error.

Examples:
* Supposeenvisnum— 17, absZero > =273, true +— #t, num— 5

* Inenv, num evaluates to 17 (more recent than 5), absZero evaluates to
-273, and true evaluates to #t. Any other name is stuck.

Expr/decl 28

define Declarations

Syntax: (define Id E)
define: keyword
Id: any identifier
E: any expression

This is a declaration, not an expression!
We will say a declarations are processed, not evaluated

Processing rule:
1. Evaluate E to avalue V in the current environment

2. Produce a new environment that is identical to the
current environment, with the additional binding
Id— Vatthe front. Use this new environment as the
current environment going forward.

Expr/decl 29

Environments: Example

env0 = @ (can write as . in text)
(define x (+ 1 2))

envl =x+ 3, @ (abbreviated x +— 3; can write as x -> 3 in text)
(define y (* 4 x))

env2=y+— 12, x +— 3 (mostrecent binding first)
(define diff (- y x))

env3=diff— 9, y— 12, x+— 3
(define test (< x diff))

envd=test — #t,diff— 9, y—> 12, x+— 3
(if test (+ (* x 5) diff) 17)

environment here is still env4
(define x (* x y))

envh=x +— 36, test — #t,diff+— 9, y—> 12, x+— 3
Note that binding x — 36 “shadows” x +— 3, making it inaccessible ., . 3,

Evaluation Assertions & Rules with Environments

The evaluation assertion notation E # env | V means
“Evaluating expression E in environment env yields value V"'.

Id#env |V [varref] El#env | V1

Where Id is an identifier and E2#env | V2 [addition]
Id — Vis the first binding in addition
env for Id Only this rule actually (+ E1 EZ) # env l "4

uses env; others just
pass it along

Where V1 and V2 are numbers and
Vis the sum of V1 and V2. Rules for other
arithmetic and relational ops are similar.

V#env |V [value]

where Vs a value
(number, boolean, etc.)

Example Derivation with Environments
Supposeenv4d =test +— #t,diff+— 9, y+—> 12, x+— 3

test #env4d | #t [varref]

x #env4d | 3 [varref]
5#envd | 5 [value]

(* x 5) #env4 | 15

diff #env4d | 9 [varref]

(+ (* x 5) diff)#env4d | 24

[multiplication]

[addition]

El#env | V1
El#env | #f E2#env | V2 [if nonfalse]
E3#env | V3 [if false] (if E1 E2E3) #env | V2
(if E1 E2E3) #env | V3 Where V1 is not # £ i

[if nonfalse]
(if test (+ (* x 5) diff) 17)#envd |24

Expr/decl 32

Conclusion-below-subderivations, in text

Suppose env4 = test -> #t, diff -> 9, y -> 12, x -> 3

| test # env4d | #t [varref]

| | | x # envd | 3 [varref]

| | | 5 # envd | 5 [value]

I [multiplication]

| | (* x 5) # envd | 15

| | diff # env4d | 9 [varref]

|

| (+ (* x 5) diff)# envd | 24
———————————————————————————————————— [if nonfalse]

(1f test (+ (* x 5) diff) 17)# envd | 24

Expr/decl 33

Conclusion-above-subderivations, with bullets

Suppose env4 = test -> #t, diff -> 9, y -> 12, x -> 3

(1f test (+ (* x 5) diff) 17)# envd | 24 [if nonfalse]
U test # envd | #t [varref]
O (+ (* x 5) diff)# envd | 24 [addition]
o (* x 5) # envd | 15 [multiplication]
" x # envd | 3 [varref]
=5 # envd | 5 [value]

o diff # envd | 9 [multiplication]

Expr/decl 34

Formalizing definitions

The declaration assertion notation (define Id E) #env | env’
means ~Processing the definition (define Id E) in environment
env yields a new environment env’”’. We use a different arrow, |,
to emphasize that definitions are not evaluated to values, but
processed to environments.

E #env | V
(define Id E)# env | Id — V, env

[define]

Expr/decl 35

Threading environments through definitions

2 # @ | 2 [value]
3 # 2 | 3 [value]

[addition]
(+23)¢ 2|5

(define a (+ 2 3))# 2 | a — 5

a # a5 | 5 [varref]

a # a— 5 | 5 [varref]

[multiplication]

[define]
(define b (* a a))# a — 5 | b — 25, a — 5

(* a a)# a — 5 | 25

‘ b # b 25, a5 | 25 [varref]

a # b +— 25, a— 5 | 5 [varref]

[subtraction]

Expr/decl 36

Racket Identifiers

* Racket identifiers are case sensitive. The following are four different
identifiers: ABC, Abc, aBc, abc

* Unlike most languages, Racket is very liberal with its definition of legal
identifers. Pretty much any character sequence is allowed as
identifier with the following exceptions:

— Can'’t contain whitespace
— Can’t contain special characters () [1{}”," “;#|\
— Can’t have same syntax as a number

* This means variable names can use (and even begin with) digits and
characters like 1 @S%"&* . -+ :<=>?/ E.g.
— myLongName, my long name, my-long-name
— 1s _atb<c*d-e?
— 76Trombones

* Why are other languages less liberal with legal identifiers?

Expr/decl 37

Small-step vs. big-step semantics

The evaluation derivations we’ve seen so far are called a big-step semantics
because the derivation e # env2 |, v explains the evaluation of e to v as one
“big step” justified by the evaluation of its subexpressions.

An alternative way to express evaluation is a small-step semantics in which an
expression is simplified to a value in a sequence of steps that simplifies
subexpressions. You do this all the time when simplifying math expressions, and
we can do it in Racket, too. E.g;

(= (* (+23) 9 (/18 6))

= (- (* 59) (/ 18 6))
= (- 45 (/ 18 6))

= (- 45 3)

= 42

Expr/decl 38

Small-step semantics: intuition

Scan left to right to find the first redex (nonvalue subexpression that can be reduced to a
value) and reduce it:

9) (/ 18 6))
(/ 18 6)) [addition]

AR AR

Expr/decl 39

Small-step semantics: reduction rules

There are a small number of reduction rules for Racket. These specify the
redexes of the language and how to reduce them.

The rules often require certain subparts of a redex to be (particular kinds of)
values in order to be applicable.

Id =V, where Id +— V is the first binding for Id
in the current environment* [varref]

(+ V1 V2)=V, where V is the sum of numbers V1 and V2 [addition]
There are similar rules for other arithmetic/relational operators
(1f Vtest Ethen Eelse) = Ethen, if Vtest is not #f [if nonfalse]

(i1f #f Ethen Eelse) = Eelse [if false]

* In a more formal approach, the notation would make the environment explicit.

E.g.,,E#env =V
Expr/decl 40

Small-step semantics: conditional example

(+ (if {(< 1 2)} (* 3 4) (/ 5 6)) 7)

=> (+ {(if #t (* 3 4) (/ 5 6))} 7) [less than]
= (+ {(* 3 4)} 7) [if nonfalse]

= {(+ 12 7)} [multiplication]
=

19 [addition]

Notes for writing derivations in text:
o You can use => for =
o Use curly braces {...} to mark the redex

o Use square brackets to name the rule used to reduce the redex
from the previous line to the current line.

Expr/decl 41

Small-step semantics:
errors as stuck expressions

Similar to big-step semantics, we model errors (dynamic type errors, divide by
zero, etc.) in small-step semantics as expressions in which the evaluation process
is stuck because no reduction rule is matched. For example:

(= (* [(+ 2 3) #t) (/ 18 6))
= (- (* 5 #t)| (/ 18 6))

(if (=2 (/ (+ 3 4)] (-55))) 809

(/
= (if (=2 (/ 7 |(- 5 5))) 8 9)
2

/ 7.0)) 8 9

= (1f (

Expr/decl 42

Small-step semantics: your turn
Use small-step semantics to evaluate the following expressions:
(1f (< 8 2) (+ #£ 5) (+ 3 4))
(if (+12) (-37) (/9 0))
(+ (if (<1 2) (* 3 4) (/ 5 6)) 7)

(+ (if 1 2 3) #t)

Expr/decl 43

Racket Documentation

Racket Guide:
https://docs.racket-lang.org/guide/

Racket Reference:
https://docs.racket-lang.org/reference

Expr/decl 44

