The Pros of cons:
Pairs and Lists in Racket

SOLUTIONS
%\ CS251 Programming
* o +»\ Languages
03 Zz| Spring 2019, Lyn Turbak
2\, 195

Department of Computer Science
Wellesley College

Racket Values

e booleans: #t, #f
* numbers:

— integers: 42,0, -273
rationals: 2/3, -251/17
floating point (including scientific notation):
98.6,-6.125,3.141592653589793, 6.023e23
complex: 3+2i,17-231,4.5-1.41421

Note: some are exact, the rest are inexact. See docs.
e strings: "cat", "CS251", "aRy",

"To be\nor not\nto be"

e characters: #\a, #\A, #\5, #\space, #\tab, #\newline

e anonymous functions: (lambda (a b) (+ a (* b c)))

What about compound data?

Pairs and Lists 2

cons Glues Two Values into a Pair

A new kind of value:
* pairs (a.k.a. cons cells): (cons V1 V2)
e.g.

iln Racket, !
cons 17 42) ! type Command-\ i
ito get Achar !

(

- (cons 3.14159 #t)
(cons "CS251" (A (x) (* 2 x))
(cons (cons 3 4.5) (cons #f #\a))

* Can glue any number of values into a cons tree!

Pairs and Lists 3

Box-and-pointer diagrams for cons trees

(cons V1 V2) vi|v2

Convention: put “small” values (numbers, booleans, characters) inside a box,
and draw a pointers to “large” values (functions, strings, pairs) outside a box.

(cons (cons 17 (cons "cat" #\a))
(cons #t (A (x) (* 2 x))))

17 #t

|
v

| |#\a (A (x) (*2x))

Pairs and Lists 4

Evaluation Rules for cons
Big step semantics:

E1| V1
E2| V2

(cons E1 E2) | (cons V1 V2)

[cons]

Small-step semantics:

cons has no special evaluation rules. Its two operands are
evaluated left-to-right until a value (cons V71 V2) is reached:

(cons E1 E2)
=* (cons V1 E2); first evaluate E7to V1 step-by-step
=* (cons V1 V2);then evaluate E2to V2 step-by-step

Pairs and Lists 5

cons evaluation example

(cons (cons {(+ 1 2)} (< 3 4))

=

U

(cons (> 5 6) (* 7 8)))

(cons (cons 3 {(< 3 4)})
cons (> 5 6) (* 7 8)))

(
(cons (cons 3 #t) (cons {(> 5 6)} (* 7 8)))
(cons (cons 3 #t) (cons #f {(* 7 8)}))
(cons (cons 3 #t) (cons #f 56))

Pairs and Lists 6

My other car is a cdr.

car and cdr

- =
* car extracts the left value of a pair |

(car (cons 7 4))=17

* cdr extract the right value of a pair
(cdr (cons 7 4))=4
Why these names?

* car from “contents of address register”

* cdr from “contents of decrement register”

Pairs and Lists 7

Practice with car and cdr Solutions ggft/z

Write expressions using car, cdr, and tr that extract
the five leaves of this tree:

(define tr (cons (cons 17 (cons "cat" #\a))
(cons #t (A (x) (* 2 x))))

tr — (cons (cons 17 (cons "cat" #\a)) |

: (cons #t (A (x) (* 2 x)))), .

17

#t: (car (cdr tr))

17: (car (car tr)) #t ‘

v
| |#\a (A(X) (*2x)) : (edr (cdr tr))
i, #\a: (cdr (cdr (car tr)))
cat" : (car (edr (car tr)))

"
Pairs and Lists 8

cadr and friends

* (caar E) means (car (car E))
* (cadr E) means (car (cdr E))
* (cdar E) means (cdr (car E))
* (cddr E) means (cdr (cdr E))

* (caaar E) means (car (car (car E)))

(cddddr E) means (cdr (cdr (cdr (cdr E))))

Any sequence of up to four as and ds between c...r is supported.

Pairs and Lists 9

Evaluation Rules for car and cdr

Big-step semantics:

‘ E | (cons V1 V2)
(car E) | V1

‘ E | (cons V1 V2)
(cdr E) | V2

[car] [cdr]

Small-step semantics:

(car (cons V1 V2)) = V1 |car]

(cdr (cons V71 V2)) = V2 [cdr]

Pairs and Lists 10

Semantics Puzzle Solutions

According to the rules on the previous page, what is the
result of evaluating this expression?

(car (cons (+ 2 3) (* 4 #t)))
Answer:

(car (cons {(+ 2 3)} (* 4 #t)))

= (car (cons 5 (* 4 #t)))

Stuck at

Note: there are two ““natural” answers. Racket gives one,
but there are languages that give the other one!

Side note: In so-called lazy languages like Haskell, (cons E1 E2) is a value
(even if E1 and E2 aren’t values) and car and cdr work as follows:

(car (cons E1 E2))

{(car (cons (+ 2 3) (* 4 #t)))}
= E1 [lazy-car]

={(+ 2 3)} [lazy-car]

(cdr (cons E1 E2)) = 5 [addition]
= E2 [aazy-cdr] Pairs and Lists 11

Printed Representations in Racket Interpreter

> (lambda (x) (* x 2))
#<procedure>

> (cons (+ 1 2) (* 3 4))
'(3 . 12)

> (cons (cons 5 6) (cons 7 8))
"((5 . 6) 7 . 8)

> (cons 1 (cons 2 (cons 3 4)))
(1 2 3 . 4)

What'’s going on here?

Pairs and Lists 12

Display Notation, Print Notation and Dotted Pairs

The display notation for (cons V1 V2) is (DN1 . DN2),
where DN1 and DN2 are the display notations for V1 and V2

In display notation, a dot “eats” a paren pair that follows it
directly:

((5 . 6) . (7 . 8))
becomes ((5 . 6) 7 . 8)

(1 . (2 . (3 . 4)))
becomes (1 . (2 3 . 4))
becomes (1 2 3 . 4)
Why? Because we’ll see this makes lists print prettily.

The print notation for pairs adds a single quote mark before the
display notation. (We’ll say more about quotation later.)

Pairs and Lists 13

display vs. print in Racket

> (display (cons 1 (cons 2 null)))
(1 2)

> (display (cons (cons 5 6) (cons 7 8)))
((5 . 6) 7 . 8)

> (display (cons 1 (cons 2 (cons 3 4))))
(1 2 3 . 4)

> (print (cons 1 (cons 2 null)))
'(1 2)

> (print (cons (cons 5 6) (cons 7 8)))
'((5 . 6) 7 . 8)

> (print (cons 1 (cons 2 (cons 3 4))))
'(1 2 3 . 4)

Pairs and Lists 14

Racket interpreter uses print (quoted) notation

> (cons 1 (cons 2 null))
'(1 2)

> (cons (cons 5 6) (cons 7 8))
'((5 . 6) 7 . 8)

> (cons 1 (cons 2 (cons 3 4)))
'(1 2 3 . 4)

Why? Because, as we’ll see later, quoted values evaluate to themselves, and
so are an easy way to specify a compound data value. Without the quote, the
parentheses would indicate function calls and would generate errors.

> '"(1 2) > (1 2)
(1 2) application: not a procedure;

expected a procedure that can be
applied to arguments

given: 1

3 . 4) arguments...:

. 4) Pairs and Lists 15

Functions Can Take and Return Pairs Solutions

(define (swap-pair pair)
(cons (cdr pair) (car pair)))

(define (sort-pair pair)
(if (< (car pair) (cdr pair))
pair
(swap-pair pair)))

What are the values of these expressions?

* (swap-pair (cons 1 2)) =% '"(2 . 1)
* (sort-pair (cons 4 7)) =% '"(4 . 7)
* (sort-pair (cons 8 5)) =* (5 . 8)

it's
7%
Ny

Pairs and Lists 16

Lists

In Racket, a list is just a recursive pattern of pairs.
A list is either

* The empty list null, a new value whose display
notation is ()

* A nonempty list (cons Vfirst Vrest) whose

- first element is Vfirst

- and the rest of whose elements are the sublist Vrest
E.g., a list of the 3 numbers 7, 2, 4 is written

(cons 7 (cons 2 (cons 4 null)))

Pairs and Lists 17

Box-and-pointer notation for lists

A list of n values is drawn like this:

Notation for null value in

These n cons cells form the “spine” of the list box-and-pointer diagrams
A l
74} V2 eoe Vn — >0
w—/ A pair slot
Vn < containing null
N~ can also be
For example: with a slash
through the slot
7 2 4 ®
7 2 4

Pairs and Lists 18

1ist sugar

Treat 1ist as syntactic sugar:*
* (list)desugarstonull
* (list E1 ..)desugarsto (cons E1 (list ..))

For example:
(list (+ 1 2) (* 3 4) (<5 0))
desugarsto (cons (+ 1 2) (list (* 3 4) (< 5 6)))
desugarsto (cons (+ 1 2) (cons (* 3 4) (list (< 5 6))))
desugarsto (cons (+ 1 2) (cons (* 3 4) (cons (< 5 6) (list))))
desugarsto (cons (+ 1 2) (cons (* 3 4) (cons (< 5 6) null)))

* This is a white lie, but we can pretend it’s true for now
Pairs and Lists 19

Display Notation for Lists

The “dot eats parens” rule makes lists display nicely:
(list 7 2 4)
desugarsto (cons 7 (cons 2 (cons 4 null))))
displays as (beforerule) (7 . (2 . (4 . ())))
displays as (afterrule) (7 2 4)
printsas ' (7 2 4)

In Racket:

> (cons 7 (cons 2 (cons 4 null)))
'(7 2 4)

> (list 7 2 4)
'(7 2 4)

Pairs and Lists 20

11ist and small-step evaluation

In small-step derivations, it’s helpful to both desugar and resugar with 1ist:

(list (+ 1 2) (* 3 4) (< 5 6))

desugarsto (cons {(+ 1 2)} (cons (* 3 4)
(cons (< 5 6) null)))

= (cons 3 (cons {(* 3 4)} (cons (< 5 6) null)))
= (cons 3 (cons 12 (cons {(< 5 6)} null)))

= (cons 3 (cons 12 (cons #t null)))

resugarsto (list 3 12 #t)

Heck, let’s just informally write this as:

(list {(+ 1 2)} (* 3 4) (< 5 6))
= (list 3 {(* 3 4)} (< 5 6))
= (list 3 12 {(< 5 6)})

= (list 3 12 #t)
Pairs and Lists 21

first, rest, and friends

e first returns the first element of a list:
(first (list 7 2 4)) = 7

(firstis almost a synonym for car, but requires its
argument to be a list)

* rest returns the sublist of a list containing every element
but the first:

(rest (list 7 2 4)) = (list 2 4)

(rest is almost a synonym for cdr, but requires its
argument to be a list)

¢ Also have second, third, .., ninth, tenth

* Stylistically, first, rest, second, third preferred
over car, cdr, cadr, caddr because emphasizes that
argument is expected to be a list. Pairs and Lists 22

first, rest, and friends examples

> (define L '(10 20 (30 40 50 60)))

> (first L) > (fourth L)
10 fourth: list contains too few elements
list: '(10 20 (30 40 50 60))

> (second L)

20 > (first '"(1 2 3 . 4))

first: contract violation

. expected: (and/c list? (not/c empty?))
> (third L)

length

length returns the number of top-level elements in a list:

given: '(1 2 3 . 4)

"(30 40 50 60)

> (fourth (third L))
60

> (rest (third L))
'(40 50 60)

Pairs and Lists 23

> (length (list 7 2 4))
3

> (length ' ((17 19) (23) () (111 230 235 251 301)))

> (length '())

\

(length ' (()))

> (length '"(1 2 3 . 4))
length: contract violation
expected: list?
given: '(1 2 3 . 4)

Pairs and Lists 24

List exercise Solutions yoin

(define LOL
(list (list 17 19)
(list 23 42 57)
(list 110 (list 111 230 235 251 301) 304 342)))

¢ What is the printed representation of LOL?
"((17 19) (23 42 57) (110 (11 230 235 251 301) 304 342))

¢ Give expressions involving LOL that return the following values:

o 19: (second (first LOL))

o 23: (first (second LOL))

o 57: (third (second LOL))

o 251: (fourth (second (third LOL)))

o '(235 251 301): (rest (rest (second (third LOL))))

¢ What is the value of
(+ (length LOL) ; =* 3
(length (third LOL)) ; =* 4
(length (second (third LOL))) ; =* 5
) 5 =* 12
Pairs and Lists 25

append

append takes any number of lists and returns a list that
combines all of the top-level elements of its argument lists.

> (append ' (17 19) '(23 42 57))
'(17 19 23 42 57)

> (append ' (17 19) '(23 42 57) '(111) '() '(230 235 251 301))
'(17 19 23 42 57 111 230 235 251 301)

> (append ' ((0 1) 2 (3 (4 5))) "(O (6 (7 8) 9)))
"((001) 2 (3 (45)) O (6 (78) 9))

> (append '(0 1) 2 '(3 (4 5)))
append: contract violation
expected: list?
given: 2

Pairs and Lists 26

cons vs. 1ist vs. append

cons, 1list, and append are the three most common ways to build lists.
They are very different! Since you will use them extensively in both Racket
and Standard ML, it’s important to master them now!

List of length n+1 that’s the result of cons
A
In the context of lists, (cons Eelt Elist) f ﬂ |

creates one new cons-cell and returns a list \ |
whose length is 1 more then the length of its Velt
2" argument (assumed to be a list here).

list V1ist of length n

value of Eelt | that'sthevalueof Elist

List of length 2 that’s the result of 1ist
(list Eeltl Eelt?2) creates a list of length 2 (A \
using two new cons-cells.

(list Eeltl .. Eeltn) creates a list of length n

Veltl Velt2

value of Eelt1 value of Eelt2

(append Elistl Elist2) only makes List of length k+n that’s the result of append
senseif Elistl and Elist2 denotelists. A

)
It returns a list whose length is the sum of the ‘ [#—>*>{ [ﬂ [49‘% M }
V \

length of the two lists. ;

Y
i) k values from E1istl nvaluesfrom Elist2
append can be applied to any number of lists.

Pairs and Lists 27

\

(

append and sharing

Given two lists L1 and L2, (append L1 LZ2) copies the list
structure of L1 but shares the list structure of L2.

For example:

L1 L2

N N

8 3

~
N
S

append L1 L2)

—

8 3 /

This fact important when reasoning about number of cons-cells created by a program.
We’'ll see why it’s true in the next lecture, when we see how append is implemented

Given more than two lists, append copies all but the last and only shares the last.
Pairs and Lists 28

cons vs. 1ist vs. append Solutions i

1. Box-and-pointer diagrams L1

L3— 7 > 2 4

L5
L4—>

7 2 4 \

L2— 3 5
List Definition 2. # Conses 3. Quoted Notation 4. Length
L3 (cons L1 L2) 1 '((8 35) 7 2 4) 4
L4 (list L1 L2) 2 '((8 3 5) (7 2 4)) 2
L5 (append L1 L2) 3 '(8 357 2 4) 6

Pairs and Lists 29

Use (cons Eval Elist) ratherthan

(append (list Eval)

Elist)

Although (cons Eval Elist) and (append (list Eval) Elist)
return equivalent lists, the former is preferred stylistically over the latter
(because the former creates only one cons-cell, but the latter creates two).

For example, use this:

'(42 17 23 57)

> (cons (* 6 7) '(17 23 57))

Rather than this:

> (append (list (* 6 7))
'(42 17 23 57)

"(17 23 57))

Pairs and Lists 30

