
SML Modules and

Abstract Data Types (ADTs)

CS251 Programming Languages

Spring 2019, Lyn Turbak

Department of Computer Science

Wellesley College

These	slides	are	lightly	edited	versions	of	Ben	Wood’s	Fall	‘15	slides,	some	of	

which	are	based	on	Dan	Grossman’s	material	from	the	University	of	Washington.		

Overview of Modules and ADTs

Hiding	implementa-on	details	is	the	most	important	strategy	
for	wriCng	correct,	robust,	reusable	soEware.	

	

Topics:	

•  ML	structures	and	signatures.	

•  AbstracCon	for	robust	library	and	client+library	code.	

•  AbstracCon	for	easy	change.	

•  ADTs	and	funcCons	as	data.	

 SML Modules and ADTS 2

Hiding with funcLons

procedural abstrac.on

Hiding	implementaCon	details	is	the	most	important	strategy	for	
wriCng	correct,	robust,	reusable	soEware.	

	

Can	you	tell	the	difference?	

	

- double 4;
val it : int = 8	
	

	

	

“Private”	top-level	funcCons	would	also	be	nice...	
•  share	a	"private"	helper	funcCon	

fun double x = x*2
fun double x = x+x
val y = 2
fun double x = x*y
fun double x =
 let fun help 0 y = y
 | help x y =
 help (x-1) (y+1)
 in help x x end

 SML Modules and ADTS 3

structure (module)
namespace management and code organizaLon

structure MyMathLib =
struct
 fun fact 0 = 1
 | fact x = x * fact (x-1)

 val half_pi = Math.pi / 2

 fun doubler x = x * 2

 val twelve = doubler (fact 3)
end

 outside:	

val facts = List.map MyMathLib.fact
 [1,4,MyMathLib.doubler 3,

 MyMathLib.twelve]

structure Name =
struct bindings end

 SML Modules and ADTS 4

signature

type for a structure (module)

List	of	bindings	and	their	types:	
variables	(incl.	funcCons),	type	synonyms,	datatypes,	excepCons	

Separate	from	specific	structure.	

signature MATHLIB =
sig
 val fact : int -> int
 val half_pi : real
 val doubler : int -> int
 val twelve : int
end

signature NAME =
sig binding-types end

 SML Modules and ADTS 5

ascripLon

(opaque – will ignore other kinds)

Ascribing	a	signature	to	a	structure	

•  Structure	must	have	all	bindings	with	types	as	declared	in	signature.	

structure Name :> NAME =
struct bindings end

signature MATHLIB =
sig
 val fact : int -> int
 val half_pi : real
 val doubler : int -> int
 val twelve : int
end

structure MyMathLib :> MATHLIB =
struct
 fun fact 0 = 1
 | fact x = x * fact (x-1)
 val half_pi = Math.pi / 2
 fun doubler x = x * 2
 val twelve = doubler (fact 3)
end

Real	power:	
Abstrac-on	and	Hiding	

 SML Modules and ADTS 6

Hiding with signatures

MyMathLib.doubler	unbound	(not	in	environment)	outside	module.	

signature MATHLIB2 =
sig
 val fact : int -> int
 val half_pi : real
 val twelve : int
end

structure MyMathLib2 :> MATHLIB2 =
struct
 fun fact 0 = 1
 | fact x = x * fact (x-1)
 val half_pi = Math.pi / 2.0
 fun doubler x = x * 2
 fun twelve = doubler (fact 3)
end

 SML Modules and ADTS 7

Abstract Data Type

type of data and operaLons on it

Example:	raConal	numbers	supporCng	add	and	toString
	

structure Rational =
struct
 datatype rational = Whole of int
 | Frac of int*int
 exception BadFrac

 (* see rationals.sml for full code *)

 fun make_frac (x,y) = ...
 fun add (r1,r2) = ...
 fun toString r = ...
end

 SML Modules and ADTS 8

Library spec and invariants

External	properCes	[externally	visible	guarantees,	up	to	library	writer]	
•  Disallow	denominators	of	0	

•  Return	strings	in	reduced	form	(“4”	not	“4/1”,	“3/2”	not	“9/6”)	

•  No	infinite	loops	or	excepCons	

ImplementaCon	invariants	[not	in	external	specifica9on]	
•  All	denominators	>	0	

•  All	rational	values	returned	from	funcCons	are	reduced	

Signatures	help	enforce	internal	invariants.	
	

 SML Modules and ADTS 9

More on invariants

Our	code	maintains	(and	relies)	on	invariants.	

	

Maintain:	

•  make_frac	disallows	0	denominator,	removes	negaCve	denominator,	and	
reduces	result	

•  add	assumes	invariants	on	inputs,	calls	reduce	if	needed	

Rely:	

•  gcd	assumes	its	arguments	are	non-negaCve	
•  add	uses	math	properCes	to	avoid	calling	reduce
•  toString	assumes	its	argument	is	in	reduced	form	

 SML Modules and ADTS 10

A first signature

With	what	we	know	so	far,	this	signature	makes	sense:	
•  Helper	funcCons	gcd	and	reduce	not	visible	outside	the	module.	

signature RATIONAL_CONCRETE =
sig
 datatype rational = Whole of int
 | Frac of int*int
 exception BadFrac
 val make_frac : int * int -> rational
 val add : rational * rational -> rational
 val toString : rational -> string
end

structure Rational :> RATIONAL_OPEN = ...

A7empt	#1	

 SML Modules and ADTS 11

Problem: clients can violate invariants

Create	values	of	type	Rational.rational directly.	

	

Rational.Frac(1,0)
Rational.Frac(3,~2)
Rational.Frac(40,32)

signature RATIONAL_CONCRETE =
sig
 datatype rational = Whole of int
 | Frac of int*int
 ...
end

 SML Modules and ADTS 12

SoluLon: hide more!

ADT	must	hide	concrete	type	defini5on	so	clients	cannot	
create	invariant-viola5ng	values	of	type	directly.	
	

This	agempt	goes	too	far:	type	rational	is	not	known	to	exist	

signature RATIONAL_WRONG =
sig
 exception BadFrac
 val make_frac : int * int -> rational
 val add : rational * rational -> rational
 val toString : rational -> string
end

structure Rational :> RATIONAL_WRONG = ...

A7empt	#2	

 SML Modules and ADTS 13

Abstract the type!

(Really Big Deal!)

signature RATIONAL =
sig
 type rational
 exception BadFrac
 val make_frac : int * int -> rational
 val add : rational * rational -> rational
 val toString : rational -> string
end

structure Rational :> RATIONAL = ...

Only	way	to	make	1st		rational.	

Only	opera-ons	
on	rational.	

Type	rational	exists,	
but	representa-on	absolutely	hidden.	

Client	can	pass	them	around,	but	can	
manipulate	them	only	through	module.	

Module	controls	all	opera-ons	with	rational,	
so	client	cannot	violate	invariants.	

Success!	(#3)	

 SML Modules and ADTS 14

Abstract Data Type
Abstract type of data + operaLons on it

Outside	of	implementaCon:	

• Values	of	type	rational	can	be	
created	and	manipulated	only	through	ADT	opera-ons.	

• Concrete	representa-on	of	values	of	type	rational	
is	absolutely	hidden.	

	
signature RATIONAL =
sig
 type rational
 exception BadFrac
 val make_frac : int * int -> rational
 val add : rational * rational -> rational
 val toString : rational -> string
end

structure Rational :> RATIONAL = ...

 SML Modules and ADTS 15

Abstract Data Types: two key tools

Powerful	ways	to	use	signatures	for	hiding:	

	

1.  Deny	bindings	exist.	
Especially	val	bindings,	fun	bindings,	constructors.	

2.  Make	types	abstract.	
Clients	cannot	create	or	inspect	values	of	the	type	directly.	

 SML Modules and ADTS 16

A cute twist

In	our	example,	exposing	the	Whole	constructor	is	no	problem	
	

In	SML	we	can	expose	it	as	a	funcCon	since	the	datatype	binding	in	the	

module	does	create	such	a	funcCon	
•  SCll	hiding	the	rest	of	the	datatype	
•  SCll	does	not	allow	using	Whole	as	a	pagern	

signature RATIONAL_WHOLE =
sig
 type rational
 exception BadFrac
 val Whole : int -> rational
 val make_frac : int * int -> rational
 val add : rational * rational -> rational
 val toString : rational -> string
end

 SML Modules and ADTS 17

Signature matching rules

structure Struct :> SIG type-checks	if	and	only	if:	
	

•  Every	non-abstract	type	in	SIG is	provided	in	Struct,	as	specified	

•  Every	abstract	type	in	SIG is	provided	in	Struct in	some	way	
•  Can	be	a	datatype	or	a	type	synonym	

•  Every	val-binding	in	SIG is	provided	in	Struct,	possibly	with	a	more	
general	and/or	less	abstract	internal	type	

•  'a list -> int	more	general	than	string list -> int
•  example	soon	

•  Every	excepCon	in	SIG is	provided	in	Struct.

Of	course	Struct can	have	more	bindings	(implicit	in	above	rules)	

 SML Modules and ADTS 18

PairRaLonal (alternaLve concrete type)

structure PairRational =
struct
 type rational = int * int
 exception BadFrac

 fun make_frac (x,y) = …
 fun Whole i = (i,1) (* for RATIONAL_WHOLE *)
 fun add ((a,b)(c,d)) = (a*d + b*c, b*d)
 fun toString r = ... (* reduce at last minute *)
end

 SML Modules and ADTS 19

Allow different implementa.ons to be equivalent

A	key	purpose	of	abstracCon:	
•  No	client	can	tell	which	you	are	using	
•  Can	improve/replace/choose	implementaCons	later	

•  Easier	with	more	abstract	signatures	(reveal	only	what	you	must)	

UnreducedRational	in	adts.sml.	
•  Same	concrete	datatype.	

•  Different	invariant:	reduce	fracCons	only	in	toString.	
•  Equivalent	under	RATIONAL	and	RATIONAL_WHOLE,	
but	not	under	RATIONAL_CONCRETE.	

PairRational	in	adts.sml.	
•  Different	concrete	datatype.	
•  Equivalent	under	RATIONAL	and	RATIONAL_WHOLE,	
but	cannot	ascribe	RATIONAL_CONCRETE.	

 SML Modules and ADTS 20

Some interesLng details

•  Internally	make_frac	has	type	int * int -> int * int,	
externally	int * int -> rational

•  Client	cannot	tell	if	we	return	argument	unchanged	

•  Internally	Whole	has	type	'a -> 'a * int	
externally	int -> rational

•  specialize	'a	to	int	
•  abstract	int * int		to	rational
•  Type-checker just figures it out

• Whole	cannot	have	types	'a -> int * int	
or	'a -> rational (must specialize all 'a uses)	

 SML Modules and ADTS 21

Cannot mix and match module bindings

Modules	with	the	same	signatures	sCll	define	different	types	
	
These	do	not	type-check:	

•  Rational.toString(UnreducedRational.make_frac(9,6))
•  PairRational.toString(UnreducedRational.make_frac(9,6))

Crucial for type system and module properLes:

•  Different modules have different internal invariants!

•  ... and different type definiLons:

•  UnreducedRational.rational looks like Rational.rational, but

clients and the type-checker do not know that

•  PairRational.rational is	int*int not	a	datatype!

	

 SML Modules and ADTS 22

signature SET =
sig
 type ''a t
 val empty : ''a t
 val singleton : ''a -> ''a t
 val isEmpty : ''a t -> bool
 val size : ''a t -> int
 val member : ''a -> ''a t -> bool
 val insert : ''a -> ''a t -> ''a t
 val delete : ''a -> ''a t -> ''a t
 val union : ''a t -> ''a t -> ''a t
 val intersection : ''a t -> ''a t -> ''a t
 val difference : ''a t -> ''a t -> ''a t
 val fromList : ''a list -> ''a t
 val toList : ''a t -> 'a list
 val fromPred : (''a -> bool) -> ''a t
 val toPred : ''a t -> ''a -> bool
 val toString : (''a -> string) -> ''a t -> string
end

Set ADT (set.sml)

Common	idiom:	if	module	provides	

one	externally	visible	type,	name	it	t.		
Then	outside	references	are	Set.t.	

Double	Ccks	mean	a	Is	an	equality	

type	(can	compare	elts	with	=)	

 SML Modules and ADTS 23

Side Note: Equality Types

Double-9ck	types	like	''a range	over	so-called	equality	types,	which	are	types	over	
which	the	polymorphic	equality	operator	=	is	defined.	
	

Sadly,	the	semanCcs	of	IEEE	754	floaCng	point	arithmeCc	standard	prevents	the	real	
type	from	being	an	equality	type.		It	includes	Nan	(not-a-number)	values	that	represent	

the	results	of	certain	operaCons,	such	as	subtracCng	posiCve	infinity	from	itself.		
According	to	the	IEEE	standard,	tesCng	two	Nan	values	for	equality	must	return	false,	
but	that	would	break	the	reflexivity	property	that	is	required	for	an	equality	type	(i.e.,	
for	any	value	v	in	an	equality	type,	v	=	v	must	be	true).		See	the	examples	below.		

﻿- val myNan = Real.posInf - Real.posInf;
val myNan = nan : real

-  Real.isNan myNan;
val it = true : bool

- Real.==(myNan,myNan);
val it = false : bool

-  Real.compareReal(myNan,myNan);
val it = UNORDERED : IEEEReal.real_order

﻿- myNan = myNan;
Error: operator and operand
don't agree [equality type
required]
operator domain: ''Z * ''Z
operand: real * real

-  Real.compare(myNan,myNan)
uncaught exception Unordered

 SML Modules and ADTS 24

ImplemenLng the SET signature

ListSet	structure	(in	class)	
Represent	sets	as	unordered	list.	

• 	Invariant:	no	duplicates		
• 	What	about	ordering?	Can’t	use	it,	since	not	part	

			of	signature!	

ListSetDups	structure	(in	class)	
Represent	sets	as	unordered	list,	*allowing*	duplicates	

	

FunSet	structure	(PS8)	
Represent	sets	as	predicate	funcCons	
	

Opera-onTreeSet	structure	(PS8)	
Represent	sets	as	trees	of	set	operaCon	

 SML Modules and ADTS 25

ListSet (in class; soluLons in SML VM repo)

structure ListSet :> SET =
struct
 type ''a t = ''a list
 val empty = []
 fun singleton x = [x]
 fun insert x ys =
 if member x ys then ys else x :: ys

... flesh out the rest in class ...
end

 SML Modules and ADTS 26

• 	Represent	sets	as	unordered	list	without	duplicates	
• 	Can’t	use	ordering,	since	not	part	of	signature!	
• 	The	following	are	helpful	in	implementaCon:	

					foldr,	List.filter,	List.exists,				
					String.concatWith

Opening Modules

﻿﻿- ListSet.isEmpty (ListSet.empty);
val it = true : bool

- ListSet.size (ListSet.singleton 17);
val it = 1 : int

- open ListSet;
opening ListSet
 type 'a t
 val empty : ''a t
 … lots of bindings omitted …
 val toString : (''a -> string) -> ''a t -> string

- isEmpty (empty);
val it = true : bool

- size (singleton 17);
val it = 1 : int

- List.size (singleton 17);
val it = 1 : int

 SML Modules and ADTS 27

TesLng ListSet

﻿- val s1 = fromList [1,2,1,2,3,2,3,1,4];
val s1 = - : int t

- toList s1;
val it = [4,3,2,1] : int list

- toString Int.toString s1;
val it = "{4,3,2,1}" : string

- val s2 = fromList [3,4,5,6];
val s2 = - : int t

- toList (union s1 s2);
val it = [1,2,6,5,4,3] : int list

- toList (intersection s1 s2);
val it = [4,3] : int list-

- toList (difference s1 s2);
val it = [2,1] : int list

- toList (difference s2 s1);
val it = [6,5] : int list

 SML Modules and ADTS 28

ListSetDups (soluLons in SML VM repo)

structure ListSetDups :> SET =
struct
 type ''a t = ''a list
 val empty = []
 fun singleton x = [x]
 fun insert x ys = x :: ys (* Allow dups *)
... flesh out the rest in class ...
end

 SML Modules and ADTS 29

• 	Represent	sets	as	unordered	lists	of	elements,	possibly	

	containing		duplicates.	This	simplifies	some	operaCons		

	and	complicates	others.	Which?		

• 	When	must	duplicates	be	removed?		

• 	A	removeDups		helper	funcCon	is	handy.		

FunSet (PS8)

Specifying sets with predicates is fun!

Math: { x | x mod 3 = 0 }

SML: fn x => x mod 3 = 0

structure FunSet :> SET =
struct
 type ''a t = ''a -> bool
 val empty = fn _ => false
 fun singleton x = fn y => x=y
 fun member x pred = pred x
 fun fromPred pred = pred
 ... Flesh out the rest in PS7 ...
end

•  Which	set	operaCons	are	unimplementable	in	FunSet?		

•  Is	fromPred	implementable	in	ListSet?		
 SML Modules and ADTS 30

OperaLonTreeSet (PS8)

(delete 4 (difference (union (union (insert 1 empty)
 (insert 4 empty))
 (union (insert 7 empty)
 (insert 4 empty)))
 (intersection (insert 1 empty)
 (union (insert 1 empty)
 (insert 6 empty)))))

 SML Modules and ADTS 31

