
CS 251 Fall 2019
Principles of Programming Languages
Ben Woodλ CS 251 Spring 2020
Principles of Programming Languages
Ben Woodλ

https://cs.wellesley.edu/~cs251/s20/

Concurrency
(and Parallelism)

Concurrency 1

https://cs.wellesley.edu/~cs251/s20/


Parallelism and Concurrency in 251

• Goal: encounter
– essence, key concerns
– non-sequential thinking
– some high-level models
– some mid-to-high-level mechanisms

• Non-goals:
– performance engineering / measurement
– deep programming proficiency
– exhaustive survey of models and mechanisms

Parallelism 2



Parallelism Concurrency

data / work

data = resources

workers = computations

workers = resources

divided among

share

Use more resources
to complete work faster.

Coordinate access
to shared resources.

Both can be expressed using a variety of primitives.
Concurrency 3



Concurrency via Concurrent ML

• Extends SML with language features for concurrency.
• Included in SML/NJ and Manticore
• Model:

– explicitly threaded
– synchronous message-passing over channels
– first-class events

Concurrency 4



CML: spawn explicit threads
vs. Manticore's "hints" for implicit parallelism.

val spawn : (unit -> unit) -> thread_id

let fun f () = new thread's work…
val t2 = spawn f

in
this thread's work …

end

Concurrency 5

spawn f

new thread 
runs f

tim
e

Thread 1 Thread 2

thread 1 
continues

workload thunk



(Aside: different model, fork-join)

Concurrency 6

fork
fork

fork

fork

join
join

join
join

fork : (unit -> 'a) -> 'a task
"call" a function in a new thread

join : 'a task -> 'a
wait for it to "return" a result

Mainly for explicit task parallelism
(expressing dependences between tasks),
not concurrency
(interaction/coordination/cooperation between tasks).

(CML's threads are similar, but cooperation is different.)



CML: How do threads cooperate?
val spawn : (unit -> unit) -> thread_id

Concurrency 7

How do we pass values in? How do we get results of work out?

workload thunk

let val data_in_env = …
fun closures_for_the_win x = …
val _ = spawn (fn () =>

map closures_for_the_win data_in_env)
in

…
end

✓

✓



CML: How do threads cooperate?
val spawn : (unit -> unit) -> thread_id

Threads communicate by passing messages 
through channels.

type ’a chan
val recv : ’a chan -> ’a 
val send : (’a chan * ’a) -> unit

Concurrency 8

How do we get results of work out?

workload thunk



Tiny channel example
val channel : unit -> ’a chan

let val ch : int chan = channel ()
fun inc () =

let val n = recv ch
val () = send (ch, n + 1)

in exit () end
in

spawn inc;
send (ch, 3);
…;
recv ch

end

Concurrency 9

spawn inc

send(ch,3)

recv ch

<start inc>

recv ch

send(ch,4)

3

4

tim
e



Concurrent streams
fun makeNatStream () =
let val ch = channel ()

fun count i = (
send (ch, i);
count (i + 1)

)
in 

spawn (fn () => count 0);
ch

end

fun sum stream 0 acc = acc
| sum stream n acc =
sum stream (n - 1) (acc + recv stream)

val nats = makeNatStream ()
val sumFirst2 = sum nats 2 0
val sumNext2 = sum nats 2 0

Concurrency 10

tim
e

spawn
(fn()=> count 0)

recv stream

recv stream

<start count 0>

send(ch,0)

send(ch,1)

0

1

send(ch,2)

send(ch,3)

recv stream

recv stream

2

3



A common pattern: looping thread

fun forever init f =
let

fun loop s = loop (f s) 
in

spawn (fn () => loop init);
()

end

Concurrency 11



Concurrent streams

fun makeNatStream () =
let

val ch = channel ()
in 

forever 0 (fn i => (
send (ch, i);
i + 1));

ch
end

Concurrency 12see cml-sieve.sml, cml-stream.sml



Event ordering? (1)
fun makeNatStream () =

let val ch = channel ()
fun count i = (

send (ch, i);
count (i + 1)

)
in 

spawn (fn () => count 0);
ch

end

val nats = makeNatStream ()
val _ = spawn (fn () => print ("Green "

^(Int.toString (recv nats))))
val _ = print ("Blue "^(Int.toString (recv nats)))

Concurrency 13

tim
e

spawn
(fn()=> count 0)

<start count 0>

send(ch,0)recv nats
0

<start fn …>

recv nats send(ch,1)
1

spawn
(fn()=> print…)



Event ordering? (2)
fun makeNatStream () =

let val ch = channel ()
fun count i = (

send (ch, i);
count (i + 1)

)
in 

spawn (fn () => count 0);
ch

end

val nats = makeNatStream ()
val _ = spawn (fn () => print ("Green "

^(Int.toString (recv nats))))
val _ = print ("Blue "^(Int.toString (recv nats)))

Concurrency 14

tim
e

spawn
(fn()=> count 0)

<start count 0>

send(ch,0)

recv nats

0
<start fn …>

recv nats

send(ch,1)
1

spawn
(fn()=> print…)



Synchronous message passing (CML)

📞 message passing = handshake
receive blocks until a message is sent
send blocks until the message received

vs 📬 asynchronous message passing
receive blocks until a message has arrived
send can finish immediately without blocking

Concurrency 15



Synchronous message passing (CML)

Concurrency 16

blocked until
another thread
receives on ch. recv ch

send (ch, 1)

send (ch, 0)

recv ch

blocked until
another thread
sends on ch.

Thread 1 Thread 2

tim
e

ch
📞

ch
📞



Asynchronous message passing
(not CML)

Concurrency 17

send does not
block

recv ch

send (ch, 0)

blocked until
a thread first
sends on ch.

Thread 1 Thread 2

tim
e

send (ch, 0)

send (ch, 0)

📬 recv ch

📬

recv ch

ch

ch



First-class events, combinators

Event constructors
val sendEvt : (’a chan * ’a) -> unit event
val recvEvt : ’a chan -> ’a event 

Event combinators
val sync : ’a event -> ’a
val choose : ’a event list -> ’a event 
val wrap : (’a event * (’a -> ’b)) -> ’b event 

val select = sync o choose

Concurrency 18



Utilities
val recv = sync o recvEvt
val send = sync o sendEvt

fun forever init f =
let
fun loop s = loop (f s) 

in
spawn (fn () => loop init);
() 

end 

Concurrency 19



Why combinators?
fun makeZipCh (inChA, inChB, outCh) =

forever () (fn () =>
let 

val (a, b) = select [
wrap (recvEvt inChA,

fn a => (a, recv inChB)),
wrap (recvEvt inChB,

fn b => (recv inChA, b)) 
] 

in 
send (outCh, (a, b))

end) 

Concurrency 20

Remember:
synchronous (blocking)
message-passing



More CML
• Emulating mutable state via concurrency: cml-cell.sml
• Dataflow / pipeline computation: cml-sieve.sml
• Implement futures: cml-futures.sml

Concurrency 21



Why avoid mutation (of shared data)?

• For parallelism?
• For concurrency?

Other models:
Shared-memory multithreading + synchronization
…

Concurrency 22



Shared-Memory Multithreading

pc pc pc

Unshared:
locals and
control

Shared:
heap and 
globals

Implicit communication through sharing.



Thread 1
t1 = bal
bal = t1 + 10

Thread 2
t2 = bal
bal = t2 - 10

t1 = bal

bal = t1 + 10

t2 = bal

bal = t2 - 10

Thread 1

Concurrency and Race Conditions

Thread 2int bal = 0;

bal == 0



t1 = bal

bal = t1 + 10

t2 = bal

bal = t2 - 10

Concurrency and Race Conditions
int bal = 0;

bal == -10

Thread 1
t1 = bal
bal = t1 + 10

Thread 2
t2 = bal
bal = t2 - 10

Thread 1 Thread 2



Concurrency and Race Conditions

Thread 1
synchronized(m) {

t1 = bal
bal = t1 + 10

}

Thread 2
synchronized(m) {

t2 = bal
bal = t2 - 10

}

acquire(m)

release(m)

t2 = bal

bal = t2 - 10

t1 = bal

bal = t1 + 10

release(m)

acquire(m)

Lock m = new Lock();
int bal = 0; Thread 1 Thread 2


