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Parallelism and Concurrency in 251

• Goal: encounter
– essence, key concerns
– non-sequential thinking
– some high-level models
– some mid-to-high-level mechanisms

• Non-goals:
– performance engineering / measurement
– deep programming proficiency
– exhaustive survey of models and mechanisms
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Parallelism Concurrency

data / work

data = resources

workers = computations

workers = resources

divided among

share

Use more resources
to complete work faster.

Coordinate access
to shared resources.

Both can be expressed using a variety of primitives.
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Concurrency via Concurrent ML

• Extends SML with language features for concurrency.
• Included in SML/NJ and Manticore
• Model:

– explicitly threaded
– synchronous message-passing over channels
– first-class events
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CML: spawn explicit threads
vs. Manticore's "hints" for implicit parallelism.

val spawn : (unit -> unit) -> thread_id

let fun f () = new thread's work…
val t2 = spawn f

in
this thread's work …

end
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spawn f

new thread 
runs f

tim
e

Thread 1 Thread 2

thread 1 
continues

workload thunk



(Aside: different model, fork-join)
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fork
fork

fork

fork

join
join

join
join

fork : (unit -> 'a) -> 'a task
"call" a function in a new thread

join : 'a task -> 'a
wait for it to "return" a result

Mainly for explicit task parallelism
(expressing dependences between tasks),
not concurrency
(interaction/coordination/cooperation between tasks).

(CML's threads are similar, but cooperation is different.)



CML: How do threads cooperate?
val spawn : (unit -> unit) -> thread_id
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How do we pass values in? How do we get results of work out?

workload thunk

let val data_in_env = …
fun closures_for_the_win x = …
val _ = spawn (fn () =>

map closures_for_the_win data_in_env)
in

…
end

✓

✓



CML: How do threads cooperate?
val spawn : (unit -> unit) -> thread_id

Threads communicate by passing messages 
through channels.

type ’a chan
val recv : ’a chan -> ’a 
val send : (’a chan * ’a) -> unit
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How do we get results of work out?

workload thunk



Tiny channel example
val channel : unit -> ’a chan

let val ch : int chan = channel ()
fun inc () =

let val n = recv ch
val () = send (ch, n + 1)

in exit () end
in

spawn inc;
send (ch, 3);
…;
recv ch

end
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spawn inc

send(ch,3)

recv ch

<start inc>

recv ch

send(ch,4)

3

4

tim
e



Concurrent streams
fun makeNatStream () =
let val ch = channel ()

fun count i = (
send (ch, i);
count (i + 1)

)
in 

spawn (fn () => count 0);
ch

end

fun sum stream 0 acc = acc
| sum stream n acc =
sum stream (n - 1) (acc + recv stream)

val nats = makeNatStream ()
val sumFirst2 = sum nats 2 0
val sumNext2 = sum nats 2 0
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tim
e

spawn
(fn()=> count 0)

recv stream

recv stream

<start count 0>

send(ch,0)

send(ch,1)

0

1

send(ch,2)

send(ch,3)

recv stream

recv stream

2

3



A common pattern: looping thread

fun forever init f =
let

fun loop s = loop (f s) 
in

spawn (fn () => loop init);
()

end
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Concurrent streams

fun makeNatStream () =
let

val ch = channel ()
in 

forever 0 (fn i => (
send (ch, i);
i + 1));

ch
end
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Event ordering? (1)
fun makeNatStream () =

let val ch = channel ()
fun count i = (

send (ch, i);
count (i + 1)

)
in 

spawn (fn () => count 0);
ch

end

val nats = makeNatStream ()
val _ = spawn (fn () => print ("Green "

^(Int.toString (recv nats))))
val _ = print ("Blue "^(Int.toString (recv nats)))
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tim
e

spawn
(fn()=> count 0)

<start count 0>

send(ch,0)recv nats
0

<start fn …>

recv nats send(ch,1)
1

spawn
(fn()=> print…)



Event ordering? (2)
fun makeNatStream () =

let val ch = channel ()
fun count i = (

send (ch, i);
count (i + 1)

)
in 

spawn (fn () => count 0);
ch

end

val nats = makeNatStream ()
val _ = spawn (fn () => print ("Green "

^(Int.toString (recv nats))))
val _ = print ("Blue "^(Int.toString (recv nats)))
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tim
e

spawn
(fn()=> count 0)

<start count 0>

send(ch,0)

recv nats

0
<start fn …>

recv nats

send(ch,1)
1

spawn
(fn()=> print…)



Synchronous message passing (CML)

📞 message passing = handshake
receive blocks until a message is sent
send blocks until the message received

vs 📬 asynchronous message passing
receive blocks until a message has arrived
send can finish immediately without blocking
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Synchronous message passing (CML)
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blocked until
another thread
receives on ch. recv ch

send (ch, 1)

send (ch, 0)

recv ch

blocked until
another thread
sends on ch.

Thread 1 Thread 2

tim
e

ch
📞

ch
📞



Asynchronous message passing
(not CML)
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send does not
block

recv ch

send (ch, 0)

blocked until
a thread first
sends on ch.

Thread 1 Thread 2

tim
e

send (ch, 0)

send (ch, 0)

📬 recv ch

📬

recv ch

ch

ch



First-class events, combinators

Event constructors
val sendEvt : (’a chan * ’a) -> unit event
val recvEvt : ’a chan -> ’a event 

Event combinators
val sync : ’a event -> ’a
val choose : ’a event list -> ’a event 
val wrap : (’a event * (’a -> ’b)) -> ’b event 

val select = sync o choose
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Utilities
val recv = sync o recvEvt
val send = sync o sendEvt

fun forever init f =
let
fun loop s = loop (f s) 

in
spawn (fn () => loop init);
() 

end 
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Why combinators?
fun makeZipCh (inChA, inChB, outCh) =

forever () (fn () =>
let 

val (a, b) = select [
wrap (recvEvt inChA,

fn a => (a, recv inChB)),
wrap (recvEvt inChB,

fn b => (recv inChA, b)) 
] 

in 
send (outCh, (a, b))

end) 
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Remember:
synchronous (blocking)
message-passing



More CML
• Emulating mutable state via concurrency: cml-cell.sml
• Dataflow / pipeline computation: cml-sieve.sml
• Implement futures: cml-futures.sml
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Why avoid mutation (of shared data)?

• For parallelism?
• For concurrency?

Other models:
Shared-memory multithreading + synchronization
…
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Shared-Memory Multithreading

pc pc pc

Unshared:
locals and
control

Shared:
heap and 
globals

Implicit communication through sharing.



Thread 1
t1 = bal
bal = t1 + 10

Thread 2
t2 = bal
bal = t2 - 10

t1 = bal

bal = t1 + 10

t2 = bal

bal = t2 - 10

Thread 1

Concurrency and Race Conditions

Thread 2int bal = 0;

bal == 0



t1 = bal

bal = t1 + 10

t2 = bal

bal = t2 - 10

Concurrency and Race Conditions
int bal = 0;

bal == -10

Thread 1
t1 = bal
bal = t1 + 10

Thread 2
t2 = bal
bal = t2 - 10

Thread 1 Thread 2



Concurrency and Race Conditions

Thread 1
synchronized(m) {

t1 = bal
bal = t1 + 10

}

Thread 2
synchronized(m) {

t2 = bal
bal = t2 - 10

}

acquire(m)

release(m)

t2 = bal

bal = t2 - 10

t1 = bal

bal = t1 + 10

release(m)

acquire(m)

Lock m = new Lock();
int bal = 0; Thread 1 Thread 2


