CS 251 Part 2: What's in a Type
Standard ML and Static Types
Topics

- Standard ML basics
- Static type system: types and type-checking rules
ML: Meta-Language for Theorem-Proving

Dana Scott, 1969

Logic of Computable Functions (LCF): for stating theorems about programs

Robin Milner, 1972

Logic for Computable Functions (LCF): automated theorem proving for LCF

Theorem proving is a hard search problem.

ML: Meta-Language for writing programs (tactics) to find proofs of theorems (about other programs)

Proof Tactic: Partial function from formula to proof.

Guides proof search, resulting in one of:

• find and return proof
• never terminate
• report an error
Language Support for Tactics

Static type system
 – guarantee correctness of generated proof

Exception handling
 – deal with tactics that fail (Turing Award)
 – make failure explicit, force programmer to deal with it

First-class/higher-order functions
 – compose other tactics
Defining ML

• Focus on static types.
• New syntax.
• Highly familiar semantics
 – Formal definitions only for the new/different.
 – Some of our simplifications in defining Racket match SML perfectly.
• Move faster since we share some formal experience now.
An ML program is a sequence of bindings.

(* My first ML program *)

val x = 34
val y = 17
val z = (x + y) + (y + 2)
val q = z + 1
val abs_of_z = if z < 0 then 0 - z else z
val abs_of_z_simpler = abs z

(* comment: ML has (* nested comments! *) *)
Bindings, types, and environments

A program is a sequence of bindings.

Bindings build two environments:
- *static* environment maps variable to type *before evaluation*
- *dynamic* environment maps variable to value *during evaluation*

Type-check each binding in order:
- using *static environment* produced by previous bindings
- and extending it with a binding from variable to type

Evaluate each binding in order:
- using *dynamic environment* produced by previous bindings
- and extending it with a binding from variable to value
SML syntax starter

Bindings
\[b ::= \text{val } x = e \]
| \[\text{fun } x \ (x : t) = e \]

Types
\[t ::= \text{bool} \ | \ \text{int} \ | \ \text{real} \ | \ \text{string} \]
| \[(t) \ | \ t \ast t \ | \ t \rightarrow t \ | \ ... \]

Expressions: \[e ::= \ ... \]
Identifiers: \[x \]

Meta-syntax
Type environments
\[T ::= . \ | \ x : t, T \]
Type-checking judgments

Bindings:

\[T \vdash b : T' \]

Under static environment \(T \), binding \(b \) type-checks and produces extended static environment \(T' \).

Expressions:

\[T \vdash e : t \]

Under static environment \(T \), expression \(e \) type-checks with type \(t \).
Variable bindings

Syntax:
\[
\text{val } x = e \quad \text{val } x = e; \\
\]
variable name \hspace{1cm} expression

Type checking:
If the expression, e, type-checks with type t under the current static environment, T, then the binding is well-typed and extends the static environment with typing $x : t$.

\[
\frac{T \vdash e : t}{\frac{T \vdash \text{val } x = e}{T \vdash x : t}, T} \quad [\text{t-val}]
\]

Evaluation (only if it type-checks):
\[
\frac{E \vdash b \Downarrow E'}{E \vdash \text{val } x = e \Downarrow x \mapsto v, E} \quad [\text{e-val}]
\]

Optional semicolon can improve messages for syntax errors.
Expression type-checking rules

\[T \vdash e : t \]

Value examples:
\[T \vdash 34 : \text{int} \quad T \vdash \sim1 : \text{int} \]
\[T \vdash 3.14159 : \text{real} \]
\[T \vdash \text{true} : \text{bool} \quad T \vdash \text{false} : \text{bool} \]

Variables:
Under static environment \(T \), variable reference \(x \) type-checks with type \(t \) if the static environment maps \(x \) to \(t \).

\[\frac{T(x) = t}{T \vdash x : t} \quad \text{[t-var]} \]
Binary expression type-checking rules

Syntax:
- $e_1 + e_2$
- $e_1 < e_2$
- $e_1 = e_2$
- $e_1 <> e_2$

Type checking:

\[
\begin{align*}
T \vdash e & : t \\
\end{align*}
\]

$$T \vdash e_1 : \text{int} \quad T \vdash e_2 : \text{int} \quad \frac{}{T \vdash e_1 + e_2 : \text{int}} \quad \text{[t-add]}$$

$$T \vdash e_1 : \text{int} \quad T \vdash e_2 : \text{int} \quad \frac{}{T \vdash e_1 < e_2 : \text{bool}} \quad \text{[t-less]}$$

$$T \vdash e_1 : \text{t} \quad T \vdash e_2 : \text{t} \quad \frac{}{T \vdash e_1 = e_2 : \text{bool}} \quad \text{[t-eq]}$$

$$T \vdash e_1 : \text{t} \quad T \vdash e_2 : \text{t} \quad \frac{}{T \vdash e_1 <> e_2 : \text{bool}} \quad \text{[t-ne]}$$

(One more restriction later)
if expressions

Syntax: \(\text{if } e_1 \text{ then } e_2 \text{ else } e_3 \)

Type checking:
\[
\begin{align*}
T & \vdash e_1 : \text{bool} \\
T & \vdash e_2 : t \\
T & \vdash e_3 : t \\
T & \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 : t
\end{align*}
\]

Evaluation:
\[
\begin{align*}
E & \vdash e_1 \downarrow \text{true} \\
E & \vdash e_2 \downarrow v_2 \\
E & \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 \downarrow v_2
\end{align*}
\]

\[
\begin{align*}
E & \vdash e_1 \downarrow \text{false} \\
E & \vdash e_3 \downarrow v_3 \\
E & \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 \downarrow v_3
\end{align*}
\]
ML static types and evaluation

Soundness
A program that type-checks never encounters a dynamic type error when evaluated.

Evaluation Rules
Same as our Racket evaluation rules (for ML syntax) except there is no dynamic type checking.
Function examples

(* Anonymous function expression *)
val double = fn (x : int) => x + x
val four = double (2)

(* Function binding *)
fun pow (x : int, y : int) =
 if y = 0
 then 1
 else x * pow (x,y-1)

fun cube (x : int) =
 pow (x,3)

val sixtyfour = cube (four)
val fortytwo =
 pow (2,2+2) + pow (4,2) + cube (2) + 2
A function that takes \(n \) arguments of types \(t_1 \ldots t_n \) and returns a result of type \(t \).
Anonymous function expressions

Syntax:
\[
\text{fn } (x_1 : t_1, \ldots, x_n : t_n) \Rightarrow e
\]

Type checking:
If the function body, \(e \), type-checks with type \(t \), under the current static environment, \(T \), extended with the argument types, then the function type-checks with type \((t_1 \ast \ldots \ast t_n) \Rightarrow t \) under the current static environment, \(T \).

\[
\frac{x_1 : t_1, \ldots, x_n : t_n, T \vdash e : t}{T \vdash \text{fn } (x_1 : t_1, \ldots, x_n : t_n) \Rightarrow e : (t_1 \ast \ldots \ast t_n) \Rightarrow t}
\]
Function bindings

Syntax:

\[
\text{fun } x_0 (x_1 : t_1, \ldots, x_n : t_n) = e
\]

Type checking:

\[
T \vdash b \% T'
\]

Otherwise equivalent to

\[
\text{val } x_0 = \text{fn } (x_1 : t_1, \ldots, x_n : t_n) \Rightarrow e
\]

Evaluation: same as Racket.
Function application

Syntax: \[e_0 (e_1, \ldots, e_n) \]

Type checking: \[T \vdash e : t \]

\[
\begin{align*}
T \vdash e_0 &: (t_1 \times \ldots \times t_n) \rightarrow t \\
T \vdash e_1 &: t_1 \\
&\quad \vdots \\
T \vdash e_n &: t_n \\
\hline
T \vdash e_0 (e_1, \ldots, e_n) &: t
\end{align*}
\]

(* Example *)

fun pow (x : int, y : int) =
 if y = 0
 then 1
 else x * pow (x, y-1)
Function application

Syntax: \(e_0 \ (e_1, \ldots, \ e_n) \)

Evaluation:

1. Under the current dynamic environment, \(E \), evaluate \(e_0 \) to a function closure value \(\langle E', \ fn (x_1, \ldots, x_n) \Rightarrow e \rangle \).
 - No dynamic type-checking: Static type-checking guarantees \(e_0 \)'s result value will be a function closure taking parameters \(x_1, \ldots, x_n \) of types matching those of \(e_1, \ldots, e_n \).

2. Under the current dynamic environment, \(E \), evaluate argument expressions \(e_1, \ldots, e_n \) to values \(v_1, \ldots, v_n \)

3. The result is the result of evaluating the closure body, \(e \), under the closure environment, \(E' \), extended with argument bindings: \(x_1 \leftarrow v_1, \ldots, x_n \leftarrow v_n \).
Function application

Syntax: \(e_0 (e_1, \ldots, e_n) \)

Evaluation: \[E \vdash e \downarrow v \]

\[
E \vdash e_0 \downarrow \langle E', \text{fn} (x_1, \ldots, x_n) \Rightarrow e \rangle \\
E \vdash e_1 \downarrow v_1 \\
\vdots \\
E \vdash e_n \downarrow v_n \\
\begin{array}{c}
x_1 \mapsto v_1, \ldots, x_n \mapsto v_n, E' \vdash e \downarrow v \\
\end{array}
\] [e-apply]

\[E \vdash e_0 (e_1, \ldots, e_n) \downarrow v \]
Watch out

Odd error messages for function-argument syntax errors

* in type syntax is not arithmetic
 – Example: `int * int -> int`
 – In expressions, * is multiplication: `x * pow(x,y-1)`

Cannot refer to later function bindings
 – Helper functions must come before their uses
 – Special construct for mutual recursion (later)
let expressions

... but

Syntax: \[\text{let } b \text{ in } e \text{ end} \]
- \(b\) is any binding and \(e\) is any expression

Type checking:
\[
\begin{align*}
T \vdash b : T' \\
T' \vdash e : t \\
\hline
T \vdash \text{let } b \text{ in } e \text{ end} : t
\end{align*}
\]

Evaluation:
\[
\begin{align*}
E \vdash b \downarrow E' \\
E' \vdash e \downarrow v \\
\hline
E \vdash \text{let } b \text{ in } e \text{ end} \downarrow v
\end{align*}
\]
let is sugar

```
let val x = e1 in e2 end
```

desugars to:
```
((fn (x) => e2) e1)
```

(Rules [t-let] and [e-let] are not needed.)

Multi-binding let:
```
let b1 b2 ... bn in e end
```

desugars to:
```
let b1 in let b2 in ... let bn in e end ... end end
```

Like Racket's let*