
CS 251 Fall 2019
Principles of Programming Languages
Ben Woodλ CS 251 Spring 2020
Principles of Programming Languages
Ben Woodλ

https://cs.wellesley.edu/~cs251/s20/

Structures, Signatures,
and Abstract Types

Abstract Types 1

Topics

Hiding implementation details
is the most important strategy
for writing correct, robust, reusable software.

• ML mechanisms:
• ML structures and signatures

• Abstract Data Types for:
• robust library and client+library code
• easy change

• Functions as data structures

Abstract Types 2

Hiding with functions
procedural abstraction

Can you tell the difference?

- double 4;
val it : int = 8

Abstract Types 3

fun double x = x*2

fun double x = x+x

val y = 2
fun double x = x*y

fun double x =
let fun help 0 y = y

| help x y =
help (x-1) (y+1)

in help x x end

"Private", but can't be shared among functions.

structure (module)
namespace management and code organization

Abstract Types 4

structure MyMathLib =
struct

fun fact 0 = 1
| fact x = x * fact (x-1)

val half_pi = Math.pi / 2

fun doubler x = x * 2
end

outside:
val facts = List.map MyMathLib.fact [1,3,5,7,9]

structure Name =
struct bindings end

signature
type for a structure (module)

List of bindings and their types:
variables, type synonyms, datatypes, exceptions

Abstract Types 5

signature MATHLIB =
sig

val fact : int -> int
val half_pi : real
val doubler : int -> int

end

signature NAME =
sig binding-types end

ascription
(opaque – will ignore other kinds)

Structure must have all bindings/types as declared in signature.

Abstract Types 6

structure Name :> NAME =
struct bindings end

signature MATHLIB =
sig

val fact : int -> int
val half_pi : real
val doubler : int -> int

end

structure MyMathLib :> MATHLIB =
struct

fun fact 0 = 1
| fact x = x * fact (x-1)

val half_pi = Math.pi / 2
fun doubler x = x * 2

end

Real power:
Abstraction and Hiding

Hiding with signatures

MyMathLib.doubler
is unbound (not in environment, not visible) outside module.

Abstract Types 7

signature MATHLIB2 =
sig

val fact : int -> int
val half_pi : real

end

structure MyMathLib2 :> MATHLIB2 =
struct

fun fact 0 = 1
| fact x = x * fact (x-1)

val half_pi = Math.pi / 2.0
fun doubler x = x * 2

end

Abstract Data Type
type of data and operations on it

Example: rational numbers supporting add and toString

Abstract Types 8

structure Rational =
struct

datatype rational = Whole of int
| Frac of int*int

exception BadFrac

(* see adts.ml for full code *)

fun make_frac (x,y) = ...
fun add (r1,r2) = ...
fun toString r = ...

end

Library spec and invariants
External properties [externally visible guarantees, up to library writer]

– Disallow 0 denominators
– Return strings in reduced form

(“4” not “4/1”, “3/2” not “9/6”)
– No infinite loops or exceptions

Implementation invariants [not in external specification]
– All denominators > 0
– All rational values returned from functions are reduced

Signatures help enforce internal invariants.

Abstract Types 9

More on invariants

Our code maintains (and relies on) invariants.

Maintain:
– make_frac disallows 0 denominator, removes negative

denominator, and reduces result
– add assumes invariants on inputs, calls reduce if needed

Rely:
– gcd assumes its arguments are non-negative
– add uses math properties to avoid calling reduce
– toString assumes its argument is in reduced form

Abstract Types 10

A first signature
Helper functions gcd and reduce not visible outside module.

Abstract Types 11

signature RATIONAL_OPEN =
sig

datatype rational = Whole of int
| Frac of int*int

exception BadFrac
val make_frac : int * int -> rational
val add : rational * rational -> rational
val toString : rational -> string

end

structure Rational :> RATIONAL_OPEN = ...

Attempt #1

Problem: clients can violate invariants

Create values of type Rational.rational directly.

Rational.Frac(1,0)
Rational.Frac(3,~2)
Rational.Frac(9,6)

Abstract Types 12

signature RATIONAL_OPEN =
sig

datatype rational = Whole of int
| Frac of int*int

...
end

Solution: hide more!

ADT must hide concrete type definition so clients
cannot create invariant-violating values of type.

Too far: type rational is not known to exist!

Abstract Types 13

signature RATIONAL_WRONG =
sig

exception BadFrac
val make_frac : int * int -> rational
val add : rational * rational -> rational
val toString : rational -> string

end

structure Rational :> RATIONAL_WRONG = ...

Attempt #2

Abstract the type! (Really Big Deal!)

Abstract Types 14

signature RATIONAL =
sig

type rational
exception BadFrac
val make_frac : int * int -> rational
val add : rational * rational -> rational
val toString : rational -> string

end

structure Rational :> RATIONAL = ...

Only way to make 1st rational.

Only operations
on rational.

Type rational exists,
but representation absolutely hidden.

Client can pass them around, but can
manipulate them only through module.

Module controls all operations with rational,
so client cannot violate invariants.

Success! (#3)

Abstract Data Type
Abstract type of data + operations on it

Outside of implementation:
• Values of type rational can be

created and manipulated only through ADT operations.
• Concrete representation of values of type rational

is absolutely hidden.

Abstract Types 15

signature RATIONAL =
sig

type rational
exception BadFrac
val make_frac : int * int -> rational
val add : rational * rational -> rational
val toString : rational -> string

end

structure Rational :> RATIONAL = ...

Abstract Data Types: two key tools

Powerful ways to use signatures for hiding:

1. Deny bindings exist.
Especially val bindings, fun bindings, constructors.

2. Make types abstract.
Clients cannot create or inspect values of the type directly.

Abstract Types 16

A cute twist
Exposing the Whole constructor is no problem.

Expose it as a function:
– Still hiding the rest of the datatype
– Still does not allow using Whole as a pattern

Abstract Types 17

signature RATIONAL_WHOLE =
sig

type rational
exception BadFrac
val Whole : int -> rational
val make_frac : int * int -> rational
val add : rational * rational -> rational
val toString : rational -> string

end

Signature matching rules
structure Struct :> SIG
type-checks if and only if all of the following hold:
1. Every non-abstract type in SIG is provided in Struct,

as specified

2. Every abstract type in SIG is provided in Struct,
in some way

3. Every val binding in SIG is provided in Struct,
possibly with a more general and/or less abstract internal type

4. Every exception in SIG is provided in Struct.

Struct can have more bindings (implicit in above rules)

Abstract Types 18

Allow different implementations
to be equivalent / interchangeable

A key purpose of abstraction:
– No client can tell which you are using
– Can improve/replace/choose implementations later
– Easier with more abstract signatures (reveal only what you must)

UnreducedRational in adts.sml.
– Same concrete datatype.
– Different invariant: reduce fractions only in toString.
– Equivalent under RATIONAL and RATIONAL_WHOLE,

but not under RATIONAL_OPEN.

PairRational in adts.sml.
– Different concrete datatype.
– Equivalent under RATIONAL and RATIONAL_WHOLE,

but cannot ascribe RATIONAL_OPEN.
Abstract Types 19

PairRational (alternative concrete type)

Abstract Types 20

structure PairRational =
struct

type rational = int * int
exception BadFrac

fun make_frac (x,y) = …
fun Whole i = (i,1) (* for RATIONAL_WHOLE *)
fun add ((a,b)(c,d)) = (a*d + b*c, b*d)
fun toString r = ... (* reduce at last minute *)

end

Some interesting details
make_frac

Internally: int * int -> int * int
Externally: int * int -> rational

• Client cannot tell if we return argument unchanged

Whole
Internally: 'a -> 'a * int
Externally: int -> rational

• Specialize 'a to int
• abstract int * int to rational
• Type-checker just figures it out

Cannot have types
'a -> int * int
'a -> rational

Abstract Types 21

Cannot mix and match module bindings

Different modules with the same signatures define different types.

These do not type-check:
Rational.toString(UnreducedRational.make_frac(9,6))

PairRational.toString(UnreducedRational.make_frac(9,6))

Crucial for type system and module properties:
– Different modules have different internal invariants!

... and different type definitions:
• UnreducedRational.rational looks like Rational.rational,

but clients and type-checker do not know
• PairRational.rational is int*int, not a datatype!

Later: contrast with Object-Oriented techniques.

Abstract Types 22

Set ADT (set.sml)

Abstract Types 23

signature SET =
sig

type ''a t
val empty : ''a t
val singleton : ''a -> ''a t
val fromList : ''a list -> ''a t
val toList : ''a t -> ''a list
val fromPred : (''a -> bool) -> ''a t
val toPred : ''a t -> ''a -> bool
val toString : (''a -> string) -> ''a t -> string
val isEmpty : ''a t -> bool
val member : ''a -> ''a t -> bool
val insert : ''a -> ''a t -> ''a t
val delete : ''a -> ''a t -> ''a t
val union : ''a t -> ''a t -> ''a t
val intersect : ''a t -> ''a t -> ''a t
val diff : ''a t -> ''a t -> ''a t

end

Common idiom: if module provides
one externally visible type, name it t.
Then outside references are Set.t.

Implementing the SET signature

ListSet structure
Represent sets as lists of their elements.

Invariants?
• Duplicates?
• Ordering?

FunSet structure
Represent sets as predicate function closures (!!!)
that return true when applied to a member of the set, and false otherwise.

Abstract Types 24

Sets are fun!

Abstract Types 25

English: "the set of all multiples of 3"

Math: { x | x mod 3 = 0 }

SML: fn x => x mod 3 = 0

structure FunSet :> SET =
struct

type ''a t = ''a -> bool
val empty = fn _ => false
fun singleton x = fn y => x=y
fun member x set = set x
fun insert x set = fn y => x=y orelse set y
...

end

Are all set operations possible?

