
CS 251 Fall 2019
Principles of Programming Languages
Ben Woodλ CS 251 Spring 2020
Principles of Programming Languages
Ben Woodλ

https://cs.wellesley.edu/~cs251/s20/

CS 251 Part 3:
When Things Happen

Delay and Laziness 1

CS 251 Fall 2019
Principles of Programming Languages
Ben Woodλ CS 251 Spring 2020
Principles of Programming Languages
Ben Woodλ

https://cs.wellesley.edu/~cs251/s20/

Delay and Laziness
When are expressions evaluated?

Bonus: memoization

Delay and Laziness 2

Topics

• Eager evaluation order (review)
– call-by-value

• Delayed evaluation with thunks
– emulating call-by-name

• Lazy evaluation with promises
– emulating call-by-need

• Infinite sequences with streams
• Memoization (bonus)

Delay and Laziness 3

Eager evaluation: arguments first
call-by-value semantics

When do arguments/subexpressions evaluate (ML, Racket)?
– Function arguments: once, before calling function
– Conditional branches: only one branch, after checking condition

Delay and Laziness 4

fun fact n =
if (n = 0) then 1 else (n * (fact (n - 1)))

fun iffy x y z =
if x then y else z

fun facty n =
iffy (n = 0)

1
(n * (facty (n - 1)))

not eager...

What's wrong?

Delayed evaluation with thunks
explicit emulation of lexically-scoped call-by-name semantics

Thunk fn () => e
– n. a zero-argument function used to delay evaluation
– v. to create a thunk from an expression:

"thunk the expression"

No new language features.

Delay and Laziness 5

fun if_by_name x y z =
if x () then y () else z ()

fun fact n =
if_by_name (fn () => n = 0)

(fn () => 1)
(fn () => n * (fact (n - 1)))

Type?

Thunk: evaluate when value needed
explicit emulation of lexically-scoped call-by-name semantics

• # evaluations?
• Faster?

Slower?
• Side effects?

Delay and Laziness 6

fun f1 th =
if … then 7 else … th() …

fun f2 th =
if … then 7 else th() + th()

fun f3 th =
let val v = th ()
in if … then 7 else v + v end

fun f4 th =
if … then 7 else
let val v = th () in v + v end

See code examples

Lazy evaluation: first time value is needed
call-by-need semantics

Argument/subexpression evaluated zero or one times,
no earlier than first time result is actually needed.

Result reused (not recomputed) if needed again anywhere.

Benefits of delayed evaluation, with minimized costs.

Explicit laziness with promises:
– Promise.delay (fn () => x * f x)
– Promise.force p

Delay and Laziness 7

Promises: explicit laziness
(a.k.a. suspensions)

Delay and Laziness 8

signature PROMISE =
sig

(* Type of promises for 'a. *)
type 'a t

(* Take a thunk for an 'a and
make a promise to produce an 'a. *)

val delay : (unit -> 'a) -> 'a t

(* If promise not yet forced, call thunk and save.
Return saved thunk result. *)

val force : 'a t -> 'a

end

Promises: delay and force
(a.k.a. suspensions)

Delay and Laziness 9

structure Promise :> PROMISE =
struct

datatype 'a promise = Thunk of unit -> 'a
| Value of 'a

type 'a t = 'a promise ref

fun delay thunk = ref (Thunk thunk)

fun force p =
case !p of

Value v => v
| Thunk th =>

let val v = th ()
val _ = p := Value v

in v end
end

Limited mutation
hidden in ADT.

See code examples

Stream: infinite sequence of values

Infinite sequence:
– Cannot make all the elements now.
– Make one when asked, delay making the rest.

Interface/idiom for division of labor:
– Stream producer
– Stream consumer
– Interleave production / consumption in time, but not in code.

Examples:
– UI events
– UNIX pipes: git diff delay.sml | grep "thunk"
– Sequential logic circuit updates (CS 240)

Delay and Laziness 11

Streams in ML: false start

Let a stream be a thunk that, when called, returns a pair of
– the next element; and
– the rest of the stream.

fn () => (next_element, next_thunk)

Given stream s, get elements:
– First: let val (v1,s1) = s ()
– Second: val (v2,s2) = s1 ()
– Third: val (v3,s3) = s2 () ...

Delay and Laziness 12

Type of s? s1?
s2? s3? ...?

Streams in ML: recursive types
Single-constructor datatype allows recursive type:

Given a stream s:
– First: let val Scons(v1,s1) = s ()
– Second: val Scons(v2,s2) = s1 ()
– Third: val Scons(v3,s3) = s2 ()
...

Delay and Laziness 13

datatype 'a scons =
Scons of 'a * (unit -> 'a scons)

type 'a stream = unit -> 'a scons
Type of s? s1?
s2? s3? ...?

Stream consumers
Find index of first element in stream for which f returns true.

Delay and Laziness 14

fun firstindex f stream =
let fun consume stream acc =

let val Scons (v,s) = stream ()
in

if f v
then acc
else consume s (acc + 1)

end
in consume stream 0 end

: ('a -> bool) -> 'a stream -> int

fun ones () = Scons (1,ones)
val rec ones = fn () => Scons (1,ones)

val nats =
let fun f x = Scons (x, fn () => f (x + 1))
in fn () => f 0 end

val powers2 =
let fun f x = Scons (x, fn () => f (x * 2))
in fn () => f 1 end

Stream producers

Create next thunk via delayed recursion!
– Return a thunk that , when called, calls the outer function recursively.

Delay and Laziness 15

Getting it wrong

Tries to use a variable before it is defined.

Would call ones_worse recursively immediately (infinitely).
Does not type-check.

Correct: thunk that returns Scons of value and stream (thunk).

Delay and Laziness 16

fun ones () = Scons (1, ones)
val rec ones = fn () => Scons (1, ones)

val ones_bad = Scons (1, ones_bad)

fun ones_worse () = Scons (1, ones_worse ())

Bonus: Lazy by default?
ML:

– Eager evaluation. Explicitly emulate laziness when needed (promises).
– Immutable data, bindings. Explicit mutable cells when needed (refs).
– Side effects anywhere.

Pros: avoid unnecessary work, build elegant infinite data structures.
Cons: difficult to control/predict evaluation order:

– Space usage: when will environments become unreachable?
– Side-effect ordering: when will effects execute?

Haskell: canonical real-world example
– Non-strict evaluation, except pattern-matching. Explicit strictness

when needed.
– Usually implemented as lazy evaluation.
– Immutable everything. Emulate mutation/state when needed.
– Side effects banned/restricted/emulated.

Delay and Laziness 17

optional

Bonus: Memoization
see memo.sml

Not delayed evaluation, but...
– Promises (call-by-need) are memoized thunks (call-by-name), though

memoizaiton is more general (multiple arguments).
– Can use an indirect recursive style similar to streams (without delay)

• Actually fixpoint...

Basic idea:
– Save results of expensive pure computations in mutable cache.
– Reuse earlier computed results instead of recomputing.
– Even for recursive calls.

Benefits:
– Save time when recomputing.
– Can reduce exponential recursion costs to linear

(and amortized by repeated calls with same arguments).

See also: dynamic programming (CS 231)
Delay and Laziness 18

optional

