Type Checking and Type Inference
Type checking

Static:
Can reject a program before it runs to prevent possibility of some errors.

Dynamic:
Little/no static checking.
May try to treat a number as a function during evaluation. Report error then.

Part of language definition, not an implementation detail.
static types ≠ explicit types

fun f x = (* infer val f : int -> int *)
 if x > 3
 then 42
 else x * 2

fun g x = (* report type error *)
 if x > 3
 then true
 else x * 2
Type inference

Problem:
- Give every binding/expression a type such that type checking succeeds.
- Fail if and only if no solution exists

Implementation:
- Could be a pass before type checker
- Often implemented in type checker

Easy, difficult, or impossible:
- Easy: Accept all programs
- Easy: Reject all programs
- Subtle, elegant, and not magic: ML
Human type inference...

What is the type of x?
What is the type of f?

Describe your process.

Next:
• More examples, but:
 – General algorithm is a slightly more advanced topic
 – Supporting nested functions also a bit more advanced

• Enough to “do type inference in your head”
 – And appreciate it is not magic
Key steps

1. Determine types of bindings in order
 – Cannot use later bindings.

2. For each `val` or `fun` binding:
 – Analyze definition for all necessary facts (**constraints**).
 • Example: \(x > 0 \Rightarrow x : \text{int} \)
 – Type error if no way for all facts to hold (over-constrained)

3. Use type variables (`'a` ...) for any unconstrained types.
 Inference and polymorphism are orthogonal; together = "sweet spot".
 Results in **most general feasible type**.

4. Enforce the **value restriction**, discussed later.

See code examples in `inf.sml`.
val x : int = 42

fun f = (y, z, w)

if then else

y

+ 0

z

x

val x = 42

fun f (y, z, w) = if y then z + x else 0
fun f x = let val (y, z) = x in (abs y) + z end

abs : int -> int
Problem: unsoundness!

Combine polymorphism and **mutation**:

```haskell
val thing = ref NONE (* : 'a option ref *)
val _ = thing := SOME "hi"
val i = 1 + case !thing of NONE => 0 | SOME x => x
```

- **Assignment type-checks:**
 - `(op:=) : 'a ref * 'a -> unit`
 - instantiate `string` for `'a`
 - use as `string ref * string -> unit`

- **Dereference type-checks:**
 - `! : 'a ref -> 'a`
 - instantiate `int` for `'a`
 - use as `int ref -> int`

- `val i : int = "hi"`
Solution

Reject at least one of these lines

```ocaml
val thing = ref NONE (* : 'a option ref *)
val _ = thing := SOME "hi"
val i = 1 + case !thing of NONE => 0 | SOME x => x
```

Cannot just special-case ref types. Abstract types!

```ocaml
signature HIDE = sig
  type 'a hidden
  val make : 'a -> 'a hidden
  val thing : 'a hidden
end
structure Hide :> HIDE = struct
  type 'a hidden = 'a ref
  val make = ref
  val thing = make NONE
end
```
The Value Restriction

A variable-binding can have a polymorphic type only if the expression is a variable or value.

- Function calls like \texttt{ref NONE} are neither

Otherwise

Warning: type vars not generalized because of value restriction are instantiated to dummy types (Basically unusable)

\textbf{Not obvious:} suffices to make type system sound.
Value Restriction downside

Causes problems when unnecessary (no mutation) because:

```plaintext
val pairWithOne = List.map (fn x => (x,1))
(* does not get type 'a list -> ('a*int) list *)
```

Type-checker does not know `List.map` is not making a mutable ref.

Workarounds for partial application:

- wrap in a function binding to keep it polymorphic
  ```plaintext
  fun pairWithOne xs = List.map (fn x => (x,1)) xs
  (* 'a list -> ('a*int) list *)
  ```

- give up on polymorphism; write explicit non-polymorphic type
  ```plaintext
  val pairWithOne : int list -> (int * int) list = 
  List.map (fn x => (x,1))
  val pairWithOne = List.map (fn (x : int) => (x,1))
  ```
A local optimum

ML type inference is elegant and fairly easy to understand, despite the value restriction.

More difficult without polymorphism
– What type should length-of-list have?

More difficult with subtyping (later)
– Suppose pairs are supertypes of wider tuples
– Then `val (y, z) = x` constrains `x` to have at least two fields, not exactly two fields.
– Sometimes languages can support this, but types are often more difficult to infer and understand.