
CS 251 Fall 2019
Principles of Programming Languages
Ben Woodλ CS 251 Spring 2020
Principles of Programming Languages
Ben Woodλ

https://cs.wellesley.edu/~cs251/s20/

Patterns Everywhere

Patterns Everywhere 1

https://cs.wellesley.edu/~cs251/s20/

Reading programs

Patterns Everywhere
2

Source
Program Lexical Analysis

Syntax Analysis (Parsing)

Semantic Analysis

Break up string input into symbols.

Parse stream of symbols into
structured representation of
program.

...

Fascinating algorithms!
Take CS 235, CS 301.

Syntax:
Backus-Naur Form (BNF) notation for grammars

Patterns Everywhere 3

<expr> ::= <num>
| <expr> + <expr>
| <expr> * <expr>

<num> ::= 0 | 1 | 2 | ...

productions
of <expr>Non-terminals

Terminals
(lexical tokens)

Start symbol: <expr>
designates "root"

(context-free)

Patterns Everywhere 4

<expr> à <num>
à 5

<expr> à <expr> + <expr>
à <num> + <expr>
à 1 + <expr>
à 1 + <expr> * <expr>
à 1 + <num> * <expr>
à 1 + 2 * <expr>
à 1 + 2 * <num>
à 1 + 2 * 3

<expr>

<expr> <expr>+

<num>

1
<expr> <expr>*

<num>

2

<num>

3

<expr> ::= <num>
| <expr> + <expr>
| <expr> * <expr>

<num> ::= 0 | 1 | 2 | ...

Derivation TreeDerivations
(parse tree)

Patterns Everywhere 5

<expr>

<expr> <expr>+

<num>

1

<expr> <expr>*

<num>

2

<num>

3

<expr>

<expr><expr> *

<num>

3

<expr><expr> +

<num>

2

<num>

1

<expr> à <expr> * <expr>
à <expr> * <num>
à <expr> * 3
à <expr> + <expr> * 3
à <num> + <expr> * 3
à 1 + <expr> * 3
à 1 + <num> * 3
à 1 + 2 * 3

<expr> ::= <num>
| <expr> + <expr>
| <expr> * <expr>

<num> ::= 0 | 1 | 2 | ...

Ambiguity:
>1 derivation of expression

Dealing with Ambiguity

Prohibit it.
Force parenthesization or equivalent.
Racket, S-expressions:

(there is (always an unambiguous) parse tree)

Allow it with:
Precedence by kind of expression (think order of operations)

1 + 2 * 3 means 1 + (2 * 3)

Directional associativity (left, right)
left-associative function application: f 2 3 means ((f 2) 3)

Patterns Everywhere 6

Representing Abstract Syntax Trees (ASTs)
(or expression trees)

A tiny calculator language:

An ML expression of type exp:

Structure of resulting value:

Patterns Everywhere 7

datatype exp = Constant of int
| Negate of exp
| Add of exp * exp
| Multiply of exp * exp

Add (Constant (10+9), Negate (Constant 4))

Add

Constant

19

Negate

Constant

4

Recursive functions
for recursive datatypes
Find maximum constant appearing in an exp.

Patterns Everywhere 8

fun max_constant (e : exp) =

Evaluating expressions in the language

Interpreter for tiny calculator language

Patterns Everywhere 9

fun eval (e : exp) =

Datatype bindings, so far

Syntax:

Type-checking:
Adds type t and constructors Ci of type ti->t to
static environment

Evaluation: nothing!

Omit “of ti” for constructors that are just tags, no
underlying data

– Such a Ci is a value of type t

Patterns Everywhere 10

datatype t = C1 of t1 | C2 of t2 | … | Cn of tn

Case expressions, so far

Syntax:

Type-checking:
– Type-check e. Must have same type as all of p1 ... pn.

• Pattern C(x1,…,xn) has type t if datatype t includes a
constructor: C of t1 * ... * tn

– Type-check each ei in current static environment extended
with types for any variables bound by pi.

• Pattern C(x1,…,xn) gives variables x1, ..., xn types t1,...,tn if
datatype t includes a constructor: C of t1 * ... * tn

– All ei must have the same type u, which is the type of the
entire case expression.

Patterns Everywhere 11

case e of p1 => e1 | p2 => e2 | … | pn => en

Case expressions, so far

Syntax:

Evaluation:
– Evaluate e to a value v
– If pi is first pattern to match v, then result is evaluation

of ei in dynamic environment “extended by the match.”
• Pattern Ci(x1,…,xn) matches value
Ci(v1,…,vn) and extends the environment by
binding x1 to v1 … xn to vn

– For “no data” constructors, pattern Ci matches value Ci
• Pattern x matches and binds to any value of any type.

– Exception if no pattern matches.
Patterns Everywhere 12

case e of p1 => e1 | p2 => e2 | … | pn => en

Patterns everywhere

Deep truths about ML and patterns.

1. Every val / fun binding and anonymous fn
definition uses pattern-matching.

2. Every function in ML takes exactly one argument

First: extend our definition of pattern-matching…

Patterns Everywhere 13

Rad!!

Pattern-match any compound type

Pattern matching also works for records and tuples:

– Pattern (x1,…,xn)
matches any tuple value (v1,…,vn)

– Pattern {f1=x1, …, fn=xn}
matches any record value {f1=v1, …, fn=vn}
(and fields can be reordered)

Patterns Everywhere 14

val binding patterns
Syntax: a val binding can use any pattern p, not just a variable

Type checking:
p and e must have the same type.

Evaluation:
1. Evaluate e to value v.
2. If p matches v, then introduce the associated bindings

Else raise an exception.

Style:
– Get all/some pieces out of a product/each-of type
– Often poor style to use constructor pattern in val binding.

Patterns Everywhere 15

val p = e

Parameter patterns

A function parameter is a pattern.
– Match against the argument in a function call.

Examples:

Patterns Everywhere 18

fun f p = e

fun sum_triple (x, y, z) = x + y + z

fun full_name {first=x, middle=y, last=z} =
x ^ " " ^ y ^ " " ^ z

Rad!!

Convergence!
Takes one int*int*int tuple, returns int that is their sum:

Patterns Everywhere 19

Takes three int values, returns int that is their sum:

fun sum_triple (x, y, z) = x + y + z

fun sum_triple (x, y, z) = x + y + z

Every ML function takes exactly one argument

"Multi-argument" functions:
– Match a tuple pattern against single argument.
– Elegant, flexible language design

Cute and useful things

“Zero-argument” functions:
– Match the unit pattern () against single argument.

Patterns Everywhere 20

fun rotate_left (x, y, z) = (y, z, x)
fun rotate_right t = rotate_left(rotate_left t)

Even more pattern-matching

Critical: added parens around each pattern, replaced => with =.
– If you mix them up, you'll get some weird error messages...

Patterns Everywhere 21

fun eval e =
case e of

Constant i => i
| Negate e2 => ~ (eval e2)
| Add (e1,e2) => (eval e1) + (eval e2)
| Multiply (e1,e2) => (eval e1) * (eval e2)

fun eval (Constant i) = i
| eval (Negate e2) = ~ (eval e2)
| eval (Add (e1,e2)) = (eval e1) + (eval e2)
| eval (Multiply (e1,e2)) = (eval e1) * (eval e2)

Patterns are deep!

Patterns are recursively structured
– Just like expressions
– Nest as deeply as desired
– Avoid hard-to-read, wordy, nested case expressions

Patterns Everywhere 22

Examples of nested list patterns
Pattern a::b::c::d matches
any list with ________ elements

Pattern a::b::c::[] matches
any list with ________ elements

Pattern [a,b,c] matches
any list with ________ elements

Pattern ((a,b),(c,d))::e matches
any ________

Patterns Everywhere 23

List checkers (suboptimal style)

Patterns Everywhere 24

fun nondec (x::xs) =
case xs of

(y::_) => x <= y andalso nondec xs
| [] => true

| nondec [] = true

fun nondec [] = true
| nondec [x] = true
| nondec (x::xs) =

let val (y::_) = xs
in

x <= y andalso nondec xs
end

List checkers (good style)

Patterns Everywhere 25

fun nondec (x::y::zs) = x <= y andalso nondec (y::zs)
| nondec _ = true

fun allsq (x::y::zs) = x*x = y andalso allsq (y::zs)
| allsq _ = true

fun checkl (f, x::y::zs) =
f (x,y) andalso checkl (f, y::zs)

| checkl _ = true

More examples: see code files

Style

Nested patterns: elegant, concise
– Avoid nested case expressions if nested patterns are simpler

Example: checkl and friends

– Common idiom: match against a tuple of datatypes to compare all
Examples: zip3 and multsign

Wildcards instead of variables when data not needed
– Examples: len and multsign

Patterns Everywhere 26

(Most of)
The definition of pattern-matching
The semantics for pattern-matching takes a pattern p and a
value v and decides (1) does it match and (2) if so, what
variable bindings are introduced.

Definition is elegantly recursive, with a separate rule for
each kind of pattern. Some of the rules:

– If p is a variable x, the match succeeds and x is bound to v
– If p is _, the match succeeds and no bindings are introduced
– If p is (p1,…,pn) and v is (v1,…,vn), the match succeeds if and

only if p1 matches v1, …, pn matches vn. The bindings are
the union of all bindings from the submatches

– If p is C p1, the match succeeds if v is C v1 (i.e., the same
constructor) and p1 matches v1. The bindings are the
bindings from the submatch.

– … (there are several other similar forms of patterns)

Patterns Everywhere 27

Patterns Everywhere 28

fun fib n =
if n = 0 orelse n = 1 then 1
else (fib (n - 2)) + (fib (n - 1))

fun fib 0 = 1
| fib 1 = 1
| fib n = (fib (n - 2)) + (fib (n - 1))

fun fib n =
case n of

0 => 1
| 1 => 1
| x => (fib (x - 2)) + (fib (x - 1))

Rad!!

intuition...

Do you suppose...?

(Efficiency reasons to implement int specially, but could be a datatype.)

Patterns Everywhere 29

datatype int = ... | 0 | 1 | 2 | ...

datatype nat = Zero | Succ nat

val one = Succ Zero

fun add (Zero,x) = x
| add (x,Zero) = x
| add (Succ x,y) = Succ (add (x, y))

Patterns Everywhere 30

datatype bool = true | false

case e1 of
true => e2

| false => e3

if e1 then e2 else e3 sugar

Rad!!

Are you noticing a pattern here?

poor style

