
CS 251 Fall 2019
Principles of Programming Languages
Ben Woodλ CS 251 Spring 2020
Principles of Programming Languages
Ben Woodλ

https://cs.wellesley.edu/~cs251/s20/

ML vs. Racket and
Static vs. Dynamic Type-Checking

Static vs. Dynamic Typing 1

ML vs. Racket

Key differences
– syntax
– datatypes/pattern-matching vs. features not studied
– let, let*, letrec
– eval
– macros
– ...
– static type system vs. dynamic contracts*

* Typed Racket supports typed modules, interesting differences with ML.

Static vs. Dynamic Typing 2

ML from a Racket perspective
A well-defined subset of Racket

Many Racket programs rejected by ML have bugs.

In what ML allows, never need primitives like number?

Other Racket programs rejected by ML would work.

Static vs. Dynamic Typing 3

(define (f x) (if (> x 0) #t (list 1 2)))
(define xs (list 1 #t "hi"))
(define y (f (car xs)))

(define (g x) (+ x x)) ; ok
(define (f y) (+ y (car y)))
(define (h z) (g (cons z 2)))

Racket from an ML Perspective

Racket has "one big datatype" for all values.

Constructors applied implicitly (values are tagged)
42 is really like Int 42

Static vs. Dynamic Typing 4

fun car v = case v of
Pair(a,b) => a

| _ => raise TypeError
fun pair? v = case v of Pair _ => true | _ => false

datatype theType = Int of int | String of string
| Cons of theType * theType
| Func of theType -> theType
| …

Int 42

Static checking

May reject a program after parsing, before running.

Part of a PL definition: what static checking is performed?

Common form: static type system
Approach: give each variable, expression, ..., a type
Purposes:

Prevent misuse of primitives (4/"hi")
Enforce abstraction
Avoid cost of dynamic (run-time) checks
Document intent
...

Dynamically-typed languages = little/no static checking

Static vs. Dynamic Typing 5

OK for other tools
to do more!

Example: ML type-checking

Catches at compile time: ...
– Operation used on a value of wrong type
– Variable not defined in the environment
– Pattern-match with a redundant pattern

Catches only at run time: ...
– Array-bounds errors, Division-by-zero, explicit exceptions
zip ([1,2],["a"])

– Logic / algorithmic errors:
• Reversing the branches of a conditional
• Calling f instead of g

(Type-checker can’t “read minds”)

Static vs. Dynamic Typing 6

Purpose: prevent some kinds of bugs
But when / how well?

“Catch a bug before it matters.”
vs.

“Don’t report a (non-)bug that might not matter.”

Prevent evaluating 3 / 0
– Keystroke time: disallow it in the editor
– Compile time: disallow it if seen in code
– Link time: disallow it in code attached to main
– Run time: disallow it right when evaluating the division
– Later: Instead of doing division, return +inf.0

• Just like 3.0 / 0.0 does in every (?) PL (it’s useful!)

Static vs. Dynamic Typing 9

Correctness
A type system is supposed to prevent X for some X.

A type system is sound if it never accepts a program
that, when run with some input, does X.

No false negatives / no missed X bugs

A type system is complete if it never rejects a program
that, no matter its input, will not do X.

No false positives / no false X bugs

Usual goal: sound but not complete (why?)

Static vs. Dynamic Typing 10

Incompleteness

ML rejects these functions even though they never
divide by a string.

Static vs. Dynamic Typing 11

fun f1 x = 4 div "hi" (* but f1 never called *)

fun f2 x = if true then 0 else 4 div "hi"

fun f3 x = if x then 0 else 4 div "hi"
val y = f3 true

fun f4 x = if x <= abs x then 0 else 4 div "hi"

fun f5 x = 4 div x
val z = f5 (if true then 1 else "hi")

Why incompleteness?
Almost everything worth checking statically is undecidable:

– Any static checker cannot do all of:
1. always terminate
2. be sound
3. be complete

– See CS 235.

"Will this function…"
– terminate on some input?
– ever use a variable not in the environment?
– treat a string as a function?
– divide by zero?

Undecidability is an essential concept at the core of computing
– The inherent approximation of static checking is probably its

most important ramification.

Static vs. Dynamic Typing 12

What if it's unsound?

It's wrong. Fix the broken language definition.

Hybrid checking? Add dynamic checks to catch X at run time.

Weak typing? "Best effort," but X could still happen.

Catch-fire semantics? !
Allow anything (not just X) to happen if program could do X.

– Simplify implementer's job at cost of programmability.
– Assume correctness, avoid costs of checking, optimize.

Static vs. Dynamic Typing 13

Weak typing ⇒ weak software

An outdated sentiment: "strong types for weak minds"
– "Humans will always be smarter than a type system (cf.

undecidability), so need to let them say trust me."

Closer to reality: "strong types amplify/protect strong minds."
– Humans really bad at avoiding bugs, need all the help we can get!
– Type systems have gotten much more expressive

(fewer false positives)
– Types do not need to be fully explicit

1 bug in 30M-line OS (in C) makes entire computer vulnerable.
– Bug like this was announced this week (every week)

Static vs. Dynamic Typing 14

Racket: dynamic, not weak!

Dynamic checking is the definition
If implementation proves some checks unneeded,
it may optimize them away.

Convenient
– Cons cells can build anything
– Anything except #f is true
– Not “catch-fire semantics” / weak typing

Static vs. Dynamic Typing 15

Don't confuse semantic choices and checking.

Semantics: Is this allowed? What does it mean?
– "foo" + "bar"

– "foo" + 3

– array[10] when array has only 5 elements
– Call a function with missing/extra arguments

Not an issue of static vs. dynamic vs. weak checking.
– Does involve trade off convenience vs. catching bugs early.

Racket generally less lenient than JavaScript, Ruby, ...

Static vs. Dynamic Typing 16

Which is better? Static? Dynamic? Weak?
Discuss.

Most languages mix static / dynamic.
– Common: types for primitives checked statically;

array bounds are not.

Discuss:
– Flexibility/Expressiveness
– Convenience
– Catch bugs
– Efficiency (run-time, programming-time, debugging-time, fixing-time)
– Reuse
– Prototyping
– Evolution/maintenance, Documentation value
– ...

Static vs. Dynamic Typing 17

Convenience: Dynamic is more convenient.

Build a heterogeneous list or return a “number or a string”
without workarounds.

Static vs. Dynamic Typing 18

(define (f y)
(if (> y 0) (+ y y) "hi"))

(let ([ans (f x)])
(if (number? ans) (number->string ans) ans))

datatype t = Int of int | String of string
fun f y = if y > 0 then Int(y+y) else String "hi"

case f x of
Int i => Int.toString i

| String s => s

Convenience: Static is more convenient.

Assume data has the expected type.
Avoid clutter (explicit dynamic checks).
Avoid errors far from logical mistake.

Static vs. Dynamic Typing 19

(define (cube x)
(if (not (number? x))

(error "bad arguments")
(* x x x)))

(cube 7)

fun cube x = x * x * x

cube 7

Expressiveness: Static prevents useful programs.

All sound static type system forbid some programs that do
nothing wrong, possibly forcing programmers to code around
limitations.

Static vs. Dynamic Typing 20

fun f g = (g 7, g true) (* might not type-check *)

val pair_of_pairs = f (fn x => (x,x))

(define (f g)
(cons (g 7) (g #t)))

(define pair_of_pairs
(f (lambda (x) (cons x x))))

Expressiveness: Static lets you tag as needed.

Pay costs of tagging (time, space, late errors) only where needed,
rather than on everything, everywhere, all the time.

Common: a few cases needed in a few spots.
Extreme: "TheOneRacketType" in ML, everything everywhere.

Static vs. Dynamic Typing 21

datatype tort = Int of int
| String of string
| Cons of tort * tort
| Fun of tort -> tort
| …

if e1
then Fun (fn x => case x of Int i => Int (i*i*i))
else Cons (Int 7, String "hi")

Bugs: Static catches bugs earlier.

Lean on type-checker for compile-time bug-catching.
Test logic only, not types.

Static vs. Dynamic Typing 22

(define (pow x) ; curried
(lambda (y)

(if (= y 0)
1
(* x (pow x (- y 1)))))) ; oops

fun pow x y = (* does not type-check *)
if y = 0
then 1
else x * pow (x,y-1)

Bugs: Static catches only easy bugs.

Type bugs are "easy" bugs.
Still need to test for subtler bugs (non-type bugs).

Static vs. Dynamic Typing 23

(define (pow x) ; curried
(lambda (y)

(if (= y 0)
1
(+ x ((pow x) (- y 1))))))

fun pow x y = (* curried *)
if y = 0
then 1
else x + pow x (y-1)

Efficiency: Static typing is faster.

Language implementation:
– Need not store tags (space, time)
– Need not check tags (time)

Your code:
– Need not check argument and result types.

(Convenience, Expressiveness, Bugs)

Your effort:
– Need not spend time writing checks or debugging type issues later.

(Bugs)

Static vs. Dynamic Typing 24

Efficiency: Dynamic typing is faster.

Language implementation:
– May optimize to remove some unnecessary tags and tests

• Example: (let ([x (+ y y)]) (* x 4))

– Hard (impossible) in general
– Often easier for performance-critical parts of program
– Can be surprisingly effective

Your code:
– Need not “code around” type-system limits with extra tags, functions

(Convenience, Expressiveness)

Your effort:
– Need not spend time satisfying type checker now.

(Convenience, Expressiveness)

Static vs. Dynamic Typing 25

Reuse: Code reuse easier with dynamic.

Reuse code on different data flexibly without
restrictive type system.

– If you use cons cells for everything, libraries that
work on cons cells are useful.

– Collections libraries are amazingly useful, may have
complicated static types.

– Use code based on what it actually does, not just
what it says it can do.

Static vs. Dynamic Typing 26

Reuse: Code reuse easier with static.

Modern type systems support reasonable code
reuse with features like generics and subtyping.

If you use cons cells for everything, confusion and
difficult debugging will ensue.
– Use separate static types to keep ideas separate
– Static types help avoid library misuse

Enforce clean abstractions and invariants for
safe/reliable code reuse.
– Also possible with dynamic types, less common,

often involves at least a small static component.
Static vs. Dynamic Typing 27

But software evolves.

Considered 5 things important when writing code:
1. Convenience
2. Not preventing useful programs
3. Catching bugs early
4. Performance
5. Code reuse

What about:
– Prototyping before a spec is stable
– Maintenance / evolution after initial release

Static vs. Dynamic Typing 28

Prototyping: Dynamic better for prototyping.

Early on, may not know what cases needed in
datatypes and functions.

– Static typing disallows code without having all cases.
– Dynamic lets incomplete programs run.
– Static forces premature commitments to data structures.
– Waste time appeasing the type-checker when you will just

change it/throw it away soon anyway.

Static vs. Dynamic Typing 29

Prototyping: Static better for prototyping.

Document evolving data structures and code-cases with
the type system.

New, evolving code most likely to make inconsistent
assumptions.

Temporary stubs as necessary, such as
| _ => raise Unimplemented

but don't forget to remove them!

Prototypes have a nasty habit of becoming permanent.
Static vs. Dynamic Typing 30

Evolution: Dynamic better for evolution.
Change code to be more permissive without affecting callers.

– Example: Take an int or a string instead of an int
– ML: exiting callers must now use constructor on arguments,

pattern-match results.
– Racket: existing callers can be oblivious

Counter-argument: Quick hacks leave bloated, confusing code.
Easy to make deeper change that accidentally breaks callers.

Static vs. Dynamic Typing 31

(define (f x) (* 2 x)) (define (f x)
(if (number? x)

(* 2 x)
(string-append x x)))

fun f x = 2 * x fun f x =
case f x of

Int i => Int (2 * i)
| String s => String(s ^ s)

Evolution: Static better for evolution.

When changing types of data or code, type-checker errors
provide a to-do list of necessary changes.

– Avoids introducing bugs.
– The more of your spec that is in your types, the more the type-

checker lists what to change when your spec changes.

Examples:
– Change the return type of a function
– Add a new constructor to a datatype

Counter-argument:
– The to-do list is mandatory. Incremental evolution is a pain.
– Cannot test part-way through.

Static vs. Dynamic Typing 32

Resolved?

Static vs. dynamic typing is too coarse a question.
– Better: What should we enforce statically? Dynamically?
– My research area: more of both, work together.

Legitimate trade-offs, not all-or-nothing.

Beyond...
– Gradual typing

• Long-running, active research field
• Just starting to appear in practice
• Still some kinks to work out

– Would programmers use such flexibility well? Who decides?

Static vs. Dynamic Typing 33

optional

Beyond...
More expressive static type systems that allow more safe
behaviors (without more unsafe behaviors).

– Dependent typing (long-running, active research field)
– Starting to see wider adoption
– Concurrency, network activity, security, data privacy
– Strong, fine-grain guarantees

Static vs. Dynamic Typing 34

fun nth 0 (x::xs) = x
| nth n (x::xs) = nth (n-1) xs

SML type checker: pattern-matching inexhaustive.
nth : int -> 'a list -> 'a

Dependent types would allow:
nth : (n:int, n>=0) -> (xs:'a list, length xs >= n) -> 'a
Or maybe even: -> (r:'a, exists ys,zs,

xs = (ys @ (r::zs)), length ys = n)

optional

Beyond...

Types are much more.
Curry-Howard correspondence: Proofs are Programs!
Great power is hidden behind this idea...

Static vs. Dynamic Typing 35

Logic Programming Languages
Propositions Types
Proposition P → Q Type P -> Q
Proposition P ∧ Q Type P * Q
Proof of proposition P Expression e : P
Proposition P is provable ∃ expression e : P

What then is 'a in logic?

Table adapted from Pierce, Types and Programming Languages, an excellent read if this direction inspires you.

optional

