WELLESLEY

A4

CS 251 Spring 2020
Principles of Programming Languages

Ben Wood

Restricted Mutable State

https://cs.wellesley.edu/~cs251/s20, Restricted Mutable State

1

ML has (restricted) mutation

* Mutable data structures are okay/useful in some situations
— When “update to state of world” is appropriate model
— But want most language constructs truly immutable

* ML does this with an explicit separate construct: references

* Do not use references on your homework.

Restricted Mutable State

.

Reference Cells

New types: 'a ref

New expressions:

— Creation: ref e
» Evaluation: create a ref cell holding result of evaluating e
* Type-checking:ife : t,thenref e t ref

— Update contents: el := e2

* Evaluation: evaluate el to a ref cell, e2 to a value;
update ref cell to hold value as its contents.

* Type-checking:
ifel : t refande2
— Get contents: !e
» Evaluation: evaluate e to a ref cell; result is its contents.
* Type-checking: if e t ref,thenle : t

t,thenel := e2 : unit

Restricted Mutable State

References example

val x = ref 42 | | | |
val y = ref 42

val z = x K\\ \\
val = x := 43

val w = (ly) + (!z) (* 85 *) X z y

(* x + 1 does not type-check *)

* Avariable bound to a ref cell is still immutable:
permanently bound to the same ref cell
— There may be aliases to the reference, which matter a lot
* References are first-class values
— Like a one-field mutable object. :=and ! don’t specify field
* Contents of the reference may change via :=

Restricted Mutable State

4

Callback idiom

Library takes function to apply later, when an event occurs.
Library interface:
val onKeyEvent : (int -> unit) -> unit

Other examples:
— When a key is pressed, mouse moves, data arrives
— When the program enters some state (e.g., turns in a game)

A library may accept multiple callbacks
— Different callbacks need different private data with different types

— Callback function’s type does not include the types of bindings in
its environment!
Restricted Mutable State

5

Library implementation

Create new ref cell

with initial contents []
.~
(int -> unit) list ref = ref []

|Getcontentsofrefcen. |

fun onKeyEvent £ = cbs := £ :: (!cbs)

| Set contents of ref cell. |

fun onEvent i =
let
fun loop fs =
case fs of
[1] => ()
| f::fs” => (£ i; loop fs')

Mutable state not absolutely necessary,
but is reasonably appropriate.

val cbs

in

loop (!cbs) Sequencing expression ;

end Evaluate left side and throw away result,
then evaluate right side and use result.

~

Clients

Closure’s environment captures any necessary context,
possibly including mutable state for "remembering" history.

val timesPressed = ref 0
val _ = onKeyEvent (fn _ =>
timesPressed := (!timesPressed) + 1)
fun printIfPressed i =
onKeyEvent (fn j =>

if i=j
then print ("pressed " "~ Int.toString i)
else ())
fun makeCounterCallback k =
let count = ref 0 in
onKeyEvent (fn i => if i=k
then count := !count + 1
else ());
count

end Restricted Mutable State

8

