
CS 251 Fall 2019
Principles of Programming Languages
Ben Woodλ CS 251 Spring 2020
Principles of Programming Languages
Ben Woodλ

https://cs.wellesley.edu/~cs251/s20/

Restricted Mutable State

Restricted Mutable State 1

ML has (restricted) mutation

• Mutable data structures are okay/useful in some situations
– When “update to state of world” is appropriate model
– But want most language constructs truly immutable

• ML does this with an explicit separate construct: references

• Do not use references on your homework.

Restricted Mutable State 2

Reference Cells
New types: 'a ref
New expressions:
– Creation: ref e

• Evaluation: create a ref cell holding result of evaluating e
• Type-checking: if e : t, then ref e : t ref

– Update contents: e1 := e2
• Evaluation: evaluate e1 to a ref cell, e2 to a value;

update ref cell to hold value as its contents.
• Type-checking:

if e1 : t ref and e2 : t, then e1 := e2 : unit

– Get contents: !e
• Evaluation: evaluate e to a ref cell; result is its contents.
• Type-checking: if e : t ref, then !e : t

Restricted Mutable State 3

References example

• A variable bound to a ref cell is still immutable:
permanently bound to the same ref cell
– There may be aliases to the reference, which matter a lot

• References are first-class values
– Like a one-field mutable object. := and ! don’t specify field

• Contents of the reference may change via :=

Restricted Mutable State 4

val x = ref 42
val y = ref 42
val z = x
val _ = x := 43
val w = (!y) + (!z) (* 85 *)
(* x + 1 does not type-check *)

x z y

Callback idiom

Library takes function to apply later, when an event occurs.
Library interface:

val onKeyEvent : (int -> unit) -> unit

Other examples:
– When a key is pressed, mouse moves, data arrives
– When the program enters some state (e.g., turns in a game)

A library may accept multiple callbacks
– Different callbacks need different private data with different types
– Callback function’s type does not include the types of bindings in

its environment!
Restricted Mutable State 5

optional
Library implementation

Restricted Mutable State 7

val cbs : (int -> unit) list ref = ref []

fun onKeyEvent f = cbs := f :: (!cbs)

fun onEvent i =
let

fun loop fs =
case fs of

[] => ()
| f::fs’ => (f i; loop fs’)

in
loop (!cbs)

end

Create new ref cell
with initial contents []

Sequencing expression ;
Evaluate left side and throw away result,
then evaluate right side and use result.

Set contents of ref cell.

Get contents of ref cell.

Mutable state not absolutely necessary,
but is reasonably appropriate.

optional

Clients
Closure’s environment captures any necessary context,
possibly including mutable state for "remembering" history.

Restricted Mutable State 8

val timesPressed = ref 0
val _ = onKeyEvent (fn _ =>

timesPressed := (!timesPressed) + 1)
fun printIfPressed i =

onKeyEvent (fn j =>
if i=j
then print ("pressed " ^ Int.toString i)
else ())

fun makeCounterCallback k =
let count = ref 0 in

onKeyEvent (fn i => if i=k
then count := !count + 1
else ());

count
end

optional

