
CS 251 Fall 2019
Principles of Programming Languages
Ben Woodλ CS 251 Spring 2020
Principles of Programming Languages
Ben Woodλ

https://cs.wellesley.edu/~cs251/s20/

Dynamic Dispatch
semantic essence

of "object-oriented" programming languages
(OOP)

Dynamic Dispatch 1

https://cs.wellesley.edu/~cs251/s20/

How are names resolved?

Key piece of semantics in any language.

• ML, Racket:
– Just one kind of variables.
– Lexical scope – unambiguous binding
– Record field names are not variables: no "lookup"

• Java, …:
– Local variables: lexical scope (more limited)
– Instance variables, methods

• Look up in terms of special this "variable"
• it's more complicated…

Dynamic Dispatch 2

Method lookup in OO languages

Two key questions for Java:

– General case:
What m is run by ___.m() ?

– Specific case:
What m is run by this.m() ?

Dynamic Dispatch 3

Dynamic Dispatch 4

class Point {
double x, y;
Point(double x, double y) {
this.x = x; this.y = y;

}
double getX() { return this.x; }
double getY() { return y; }
double distFromOrigin() {
return Math.sqrt(this.getX() * this.getX()

+ getY() * getY());
}

}

class PolarPoint extends Point { // poor design, useful example
double r, theta;
PolarPoint(double r, double theta) {
super(0.0, 0.0); this.r = r; this.theta = theta;

}
double getX() { return this.r * Math.cos(this.theta); }
double getY() { return r * Math.sin(theta); }

}
Point p = …; // ???
p.getX(); // ???
p.distFromOrigin(); // ???overriding

implicit this.

dynamic dispatch

Aside: what about overloading?

• Overloading = multiple different methods/functions
with different argument or return types that
happen to share the same name.

• Overriding = method in subclass that "replaces"
method in superclass in dynamic dispatch.

• Overloading != Overriding

For purposes of 251: ignore overloading!

Subtyping 5

semantically uninteresting

semantically interesting!

Method lookup: example

Key questions:
– Which distToOrigin is called?
– Which getX, getY methods does it call?

Dynamic Dispatch 6

Point p = …; // ???
p.getX(); // ???
p.distFromOrigin(); // ???

Dynamic dispatch
(a.k.a. late binding, virtual methods)

The unique OO semantics feature.

Method call: e.m()

Evaluation rule:
1. Under the current environment, evaluate e to value v.
2. Let C refer to the class of the receiver object v.
3. Until class C contains a method definition m() { body }

let C refer to the superclass of the current C and repeat step 3.
4. Under the environment of class C, extended with the binding

this ↦ v, evaluate the body found in step 3.

Note: this refers to current receiver object, not containing class.
– this.m() uses dynamic dispatch just like other calls.
– NOT lexical scope, not dynamic scope

Dynamic Dispatch 7

Dynamic dispatch is not ...
obj0.m(obj1,...,objn)

≠
m(obj0,obj1,...,objn)

Is this just an implicit parameter that captures a first
argument written in a different spot?

NO!
"What m means" is determined by run-time class of obj0!

Must inspect obj0 before starting to execute m.

this is different than any other parameters.
Dynamic Dispatch 8

Key artifacts of dynamic dispatch
• Why overriding works...
distFromOrigin in PolarPoint

• Subclass definition of m "shadows" superclass
definition of m when dispatching on object of
subclass (or descendant) in all contexts,
even if dispatching from method in superclass.

• More complicated than the rules for closures
– Must treat this specially
– May seem simpler only if you learned it first
– Complicated != inferior or superior

Dynamic Dispatch 9

Closed vs. open

ML: closures are, well, closed.

May shadow even, but calls to odd are unaffected.

Dynamic Dispatch 10

fun even x = if x=0 then true else odd (x-1)
and odd x = if x=0 then false else even (x-1)

(* does not change odd: too bad, would help *)
fun even x = (x mod 2) = 0

(* does not change odd: good, would break *)
fun even x = false

Closed vs. open
Most OOP languages: subclasses can change the behavior of
superclass methods they do not override.

Dynamic Dispatch 11

class A {
boolean even(int x) {

if (x == 0) return true;
else return odd(x-1);

}
boolean odd(int x) {

if (x == 0) return false;
else return even(x-1);

}
}
class B extends A { // improves odd in B objects

boolean even(int x) { return x % 2 == 0; }
}
class C extends A { // breaks odd in C objects

boolean even(int x) { return false; }
}

OOP trade-off: implicit extensibility
Any method that calls overridable methods may have its
behavior changed by a subclass even if it is not overridden.

– On purpose, by mistake?
– Behavior depends on calls to overridable methods

• Harder to reason about “the code you're looking at.”
– Sources of unknown behavior are pervasive:

all overridable methods transitively called by this method.
– Avoid by disallowing overriding: “private” or “final”

• Easier for subclasses to extend existing behavior without
copying code.
– Assuming superclass method is not modified later

Dynamic Dispatch 12

FP trade-off: explicit extensibility

A function that calls other functions may have its
behavior affected only where it calls functions
passed as arguments.

• Easier to reason about “the code you're looking at.”
– Sources of unknown behavior are explicit:

calls to argument functions.

• Harder for other code to extend existing behavior
without copying code.
– Only by functions as arguments.

Dynamic Dispatch 13

Aside: overloading is static.

overloading:
> 1 methods in class have same name

Pick the "best" overloaded method using the static
types of the arguments

• Complicated rules for “best”
• Some confusion when expecting wrong over-thing
• Not all that semantically interesting

overriding:
if and only if same number/types of arguments

Dynamic Dispatch 14

Aside: static dispatch
(a.k.a early binding, non-virtual methods)

Lookup method based on static type of receiver.

Using static dispatch, a call e.m2(), where e has declared class C:
Always resolves to "closest" method m2

defined in C or C's ancestor classes.
Completely ignores run-time class of object result of e.

... similar to lexical scope for method lookup with inheritance.

Same method call always resolves to same method definition.
Determined statically by type system before running program.

used for super in Java, non-virtual methods in C++

Dynamic Dispatch 15

Requires
static types...

Dynamic Dispatch 16

class Point {
double x, y;
Point(double x, double y) {
this.x = x; this.y = y;

}
double getX() { return this.x; }
double getY() { return y; }
double distFromOrigin() {
return Math.sqrt(this.getX() * this.getX()

+ getY() * getY());
}

}

class PolarPoint extends Point { // poor design, useful example
double r, theta;
PolarPoint(double r, double theta) {
super(0.0, 0.0); this.r = r; this.theta = theta;

}
double getX() { return this.r * Math.cos(this.theta); }
double getY() { return r * Math.sin(theta); }

}
Point p = …; // ???
p.getX(); // ???
p.distFromOrigin(); // ???overriding

implicit this.

static dispatch

