WELLESLEY

CS 251 Spring 2020
Principles of Programming Languages \ 2 /
Ben Wood

Higher-order Functions

+hof.rkt

https://cs.wellesley.edu/~cs251/s20 Higher-order Functions

Topics

Functions are first-class.
Using first-class/higher-order functions
Map and filter

Later: getting the semantics right

Higher-order Functions

.

First-class and higher order functions

Functions are first-class values, can be used or created wherever we use or
create any other values:
— Arguments to (higher order) function calls
Results of (higher order) function bodies
Stored in cons cells or other data structures
Bound (named) by variables

Higher order functions take or return other functions.

Powerful ways to:
— factor out common functionality
— parameterize general patterns with specific behavior

Higher-order Functions

Function closures support lexical scope
for nested functions.

Sneak peak:

— Function bodies can use any bindings in
scope where function is defined, including
from outside the function definition.

— Distinct concept from first-class functions
— Back to this powerful idea soon!

Higher-order Functions

4

Functions as arguments: hof . rkt A style point

(define (map-pair f pair) '(ﬂ.—FX—#L%#—ﬁ)'
(cons (f (car pair)) (f (cdr pair))))
tambda—(x)—(f—=))
Elegant strategy for factoring out code for
common patterns of data manipulation. X(n—times (lambda (x) (cdr x)) 2 (list 1 2 3 4))
Combines well with anonymous functions. (n-times cdr 2 (list 1 2 3 4))
See hof.rkt
p 010" K
Map Filter
(define (map f elems) (define (filter f elems)
(if (null7 elems) (if (null? elems)
: null
null (if (£ (first elems))
(cons (f (first elems)) (cons (first elems)

(filter f (rest elems)))
(filter £ (rest elems)))))

argument list ’vl | A.H’ v2 | } ces ,@Z argument list Lil | [LLZ | eee M

(map £ (rest elems)))))

result list ’ | 4.%’ | } e J\:Z] result list mz e M

Higher-order Functions 7 Higher-order Functions 8

List practice with HOFs: 1lists.rkt

* Which functions could be built using map/filter?

* For which functions does this feel more or less
elegant than your original implementation?

Higher-order Functions 9

Generalizing

Our examples of first-class functions so far:
— Take one function as an argument to another function
— Process a number or a list

But first-class functions are useful anywhere for any kind of data
— Pass several functions as arguments
— Put functions in data structures (tuples, lists, etc.)
— Return functions as results
— Write higher-order functions that traverse other data structures

Powerful idioms to:
— factor out and reuse common functionality
— parameterize general patterns with specific behavior
— clearly communicate high-level meaning/intent

Higher-order Functions 10

