
CS 251 Fall 2019
Principles of Programming Languages
Ben Woodλ CS 251 Spring 2020
Principles of Programming Languages
Ben Woodλ

https://cs.wellesley.edu/~cs251/s20/

Higher-order Functions
+hof.rkt

Higher-order Functions 1

https://cs.wellesley.edu/~cs251/s20/


Topics

• Functions are first-class.
• Using first-class/higher-order functions
• Map and filter

• Later: getting the semantics right

Higher-order Functions 2



First-class and higher order functions

Functions are first-class values, can be used or created wherever we use or 
create any other values:

– Arguments to (higher order) function calls
– Results of (higher order) function bodies
– Stored in cons cells or other data structures
– Bound (named) by variables
– …

Higher order functions take or return other functions.

Powerful ways to:
– factor out common functionality
– parameterize general patterns with specific behavior

Higher-order Functions 3



Function closures support lexical scope 
for nested functions.

Sneak peak:
– Function bodies can use any bindings in 

scope where function is defined, including 
from outside the function definition.

– Distinct concept from first-class functions
– Back to this powerful idea soon!

Higher-order Functions 4



Functions as arguments: hof.rkt

(define (map-pair f pair)
(cons (f (car pair)) (f (cdr pair))))

Elegant strategy for factoring out code for 
common patterns of data manipulation.

Combines well with anonymous functions.

See hof.rkt
Higher-order Functions 5



A style point

(if x #t #f)

(lambda (x) (f x))

(n-times (lambda (x) (cdr x)) 2 (list 1 2 3 4))

(n-times cdr 2 (list 1 2 3 4))

Higher-order Functions 6

✘

✓



Map

(define (map f elems)
(if (null? elems)

null
(cons (f (first elems))

(map f (rest elems)))))

Higher-order Functions 7

HOF HOF

v1 v2 vn

fff
(f v1) 

⋯

⋯
(f v2) (f vn) 

argument list

result list



Filter
(define (filter f elems)

(if (null? elems)
null
(if (f (first elems))

(cons (first elems)
(filter f (rest elems)))

(filter f (rest elems)))))

Higher-order Functions 8

HOF HOF

#t #f #t 

v1 v2 vn

f f f

⋯

⋯ vnv1

argument list

result list



List practice with HOFs: lists.rkt

• Which functions could be built using map/filter?
• For which functions does this feel more or less 

elegant than your original implementation?

Higher-order Functions 9



Generalizing
Our examples of first-class functions so far:

– Take one function as an argument to another function
– Process a number or a list

But first-class functions are useful anywhere for any kind of data
– Pass several functions as arguments
– Put functions in data structures (tuples, lists, etc.)
– Return functions as results
– Write higher-order functions that traverse other data structures

Powerful idioms to:
– factor out and reuse common functionality
– parameterize general patterns with specific behavior
– clearly communicate high-level meaning/intent

Higher-order Functions 10


