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Topics

• Control scope with local bindings
• Shadowing
• Scope sugar
• Nested function bindings
• Avoid duplicate computations
– style and convenience
– efficiency (big-O)
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let expressions
Syntax: (let ([x1 e1] … [xn en]) e)

Each xi is any variable. e and each ei are any expressions.

Evaluation:
1. Under the current dynamic environment, E,

evaluate e1 through en to values v1, …, vn.
2. The result is the result of evaluating e under the environment, E,

extended with bindings x1⟼ v1, …, xn⟼ vn.

Local Bindings and Scope 3

E ⊢ e1 ↓ v1
…

E ⊢ en ↓ vn
x1 ⟼ v1, …, xn ⟼ vn, E ⊢ e ↓ v

E ⊢ (let ([x1 e1] … [xn en]) e) ↓ v
[let]

Interchangeable: (), [], or {}



let expressions

Local Bindings and Scope 4

(+ (let ([x 1]) x)
(let ([y (let ([a 2]) a)]

[z 4])
(- z y)))



(define add-n (lambda ( x ) (+  n  x )) )

(define add-2n (lambda ( y ) (add-n (add-n y ))) )

(define n 17)

(define (f z)

(let ([ c (add-2n z ) ]

[ d (- z 3)     ])

(+ z (* c d )))    )     )

let expressions control scope.

Scope of a binding = area of program that is evaluated while that 
binding is in environment.
Visualize scope via lexical contours.
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let expressions control scope.
Let expression bindings are in the environment only
during evaluation of the body.

Errors: cannot use x or y outside scope of bindings.

; E = .
(+ (let ([x 4]

[y (* 2 x)])
; E = x⟼4, y⟼8, .
(+ x y)             )

; E = .
(* x y))
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Shadowing

; E = .
(let ([x 2])
; E = x⟼2, .
(+ x

(let ([x (* x x)])
; E = x⟼4, x⟼2, .
(+ x 3)             ) )

; E = .
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and and or are sugar!

(and e1 e2)
desugars to
(if e1 e2 #f)

(or e1 e2)

desugars to
(let ([x1 e1])
(if x1 x1 e2))
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where x1 is not used (without first being bound) in e2
(easiest: "fresh" identifier used nowhere in entire program)



let is sugar!
Syntax: (let ([x1 e1] … [xn en]) e)

Each xi is any variable. e and each ei are any expressions.

Evaluation:
1. Under the current dynamic environment, E,

evaluate e1 through en to values v1, …, vn.
2. The result is the result of evaluating e under the environment, E,

extended with bindings x1⟼ v1, …, xn⟼ vn.
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E ⊢ e1 ↓ v1
…

E ⊢ en ↓ vn
x1 ⟼ v1, …, xn ⟼ vn, E ⊢ e ↓ v

E ⊢ (let ([x1 e1] … [xn en]) e) ↓ v
[let]



let is sugar!

(let ([x1 e1] … [xn en]) e)
desugars to
((lambda (x1 … xn) e) e1 … en)

Example:
(let ([x (* 3 5)]) (+ x x))

desugars to
((lambda (x) (+ x x)) (* 3 5)) 
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Local function bindings
(define (quad x)

(let ([square (lambda (x) (* x x))])
(square (square x))))

Private helper functions bound locally can be good style.
Need letrec to allow recursion*.

(define (count-up-from-1 x)
(letrec
([count (lambda (from to)

(if (= from to)
(cons to null)
(cons from

(count (+ from 1) to))))])
(count 1 x)))
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Better style:
(define (count-up-from-1 x)

(letrec
([count-to-x

(lambda (from)
(if (= from x)

(cons x null)
(cons from

(count-to-x (+ from 1) x))))])
(count-to-x 1)))

• Functions can use bindings in the environment 
where they are defined: count-to-x can use x.

• Unnecessary parameters are usually bad style:
– to in previous example
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Nested functions: style

Good style to define helper functions inside 
the functions they help if they are:
– Unlikely to be useful elsewhere
– Likely to be misused if available elsewhere
– Likely to be changed or removed later

Trade-off in code design:
– reusing code saves effort and avoids bugs
–makes the reused code harder to change later
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Avoid repeated recursion
Consider this code and the recursive calls it makes

– Ignore calls to first, rest, and null?
(small constant amounts of work)
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(define (bad-max xs)
(if (null? xs)

null ; not defined on empty list
(if (null? (rest xs))

(first xs)
(if (> (first xs)

(bad-max (rest xs)))
(first xs)
(bad-max (rest xs))))))



Fast vs. unusable
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bm 50,…

(if (> (first xs)
(bad-max (rest xs)))

(first xs)
(bad-max (rest xs)))

bm 49,… bm 48,… bm 1

bm 1,… bm 2,… bm 3,… bm 50

…

bm 50

250

timesbm 2,…

bm 3,…

bm 3,…

bm 3,…

(bad-max (range 1 51))

(bad-max (range 50 0 -1))

Assume 10-7 seconds each
Then: 50 x 10-7 sec vs 1.12 x 108 sec = 3.5 years
(bad-max (list 1 2 … 100)) takes > 4 x 1015 years.
Our sun is predicted to die in about 5 x 109  years.

O(2n )



Efficient max
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(define (good-max xs)
(if (null? xs)

null ; not defined on empty list
(if (null? (first xs))

(first xs)
(let ([rest-max (good-max (rest xs))])

(if (> (first xs) rest-max)
(first xs)
rest-max)))))

gm 50,… gm 49,… gm 48,… gm 1

gm 1,… gm 2,… gm 3,… gm 50



Efficient and concise max
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(define (maxlist xs)
(if (null? xs)

null ; not defined on empty list
(max (first xs) (maxlist (rest xs)))))

; even better implementations to come later


