
CS 251 Fall 2019
Principles of Programming Languages
Ben Woodλ CS 251 Spring 2020
Principles of Programming Languages
Ben Woodλ

https://cs.wellesley.edu/~cs251/s20/

Local Bindings and Scope

+let.rkt

Local Bindings and Scope 1

https://cs.wellesley.edu/~cs251/s20/

Topics

• Control scope with local bindings
• Shadowing
• Scope sugar
• Nested function bindings
• Avoid duplicate computations
– style and convenience
– efficiency (big-O)

Local Bindings and Scope 2

let expressions
Syntax: (let ([x1 e1] … [xn en]) e)

Each xi is any variable. e and each ei are any expressions.

Evaluation:
1. Under the current dynamic environment, E,

evaluate e1 through en to values v1, …, vn.
2. The result is the result of evaluating e under the environment, E,

extended with bindings x1⟼ v1, …, xn⟼ vn.

Local Bindings and Scope 3

E ⊢ e1 ↓ v1
…

E ⊢ en ↓ vn
x1 ⟼ v1, …, xn ⟼ vn, E ⊢ e ↓ v

E ⊢ (let ([x1 e1] … [xn en]) e) ↓ v
[let]

Interchangeable: (), [], or {}

let expressions

Local Bindings and Scope 4

(+ (let ([x 1]) x)
(let ([y (let ([a 2]) a)]

[z 4])
(- z y)))

(define add-n (lambda (x) (+ n x)))

(define add-2n (lambda (y) (add-n (add-n y))))

(define n 17)

(define (f z)

(let ([c (add-2n z)]

[d (- z 3)])

(+ z (* c d)))))

let expressions control scope.

Scope of a binding = area of program that is evaluated while that
binding is in environment.
Visualize scope via lexical contours.

Local Bindings and Scope 5

let expressions control scope.
Let expression bindings are in the environment only
during evaluation of the body.

Errors: cannot use x or y outside scope of bindings.

; E = .
(+ (let ([x 4]

[y (* 2 x)])
; E = x⟼4, y⟼8, .
(+ x y))

; E = .
(* x y))

Local Bindings and Scope 6

Shadowing

; E = .
(let ([x 2])
; E = x⟼2, .
(+ x

(let ([x (* x x)])
; E = x⟼4, x⟼2, .
(+ x 3)))

; E = .

Local Bindings and Scope 7

and and or are sugar!

(and e1 e2)
desugars to
(if e1 e2 #f)

(or e1 e2)

desugars to
(let ([x1 e1])
(if x1 x1 e2))

Local Bindings and Scope 8

where x1 is not used (without first being bound) in e2
(easiest: "fresh" identifier used nowhere in entire program)

let is sugar!
Syntax: (let ([x1 e1] … [xn en]) e)

Each xi is any variable. e and each ei are any expressions.

Evaluation:
1. Under the current dynamic environment, E,

evaluate e1 through en to values v1, …, vn.
2. The result is the result of evaluating e under the environment, E,

extended with bindings x1⟼ v1, …, xn⟼ vn.

Local Bindings and Scope 9

E ⊢ e1 ↓ v1
…

E ⊢ en ↓ vn
x1 ⟼ v1, …, xn ⟼ vn, E ⊢ e ↓ v

E ⊢ (let ([x1 e1] … [xn en]) e) ↓ v
[let]

let is sugar!

(let ([x1 e1] … [xn en]) e)
desugars to
((lambda (x1 … xn) e) e1 … en)

Example:
(let ([x (* 3 5)]) (+ x x))

desugars to
((lambda (x) (+ x x)) (* 3 5))

Local Bindings and Scope 10

Local function bindings
(define (quad x)

(let ([square (lambda (x) (* x x))])
(square (square x))))

Private helper functions bound locally can be good style.
Need letrec to allow recursion*.

(define (count-up-from-1 x)
(letrec
([count (lambda (from to)

(if (= from to)
(cons to null)
(cons from

(count (+ from 1) to))))])
(count 1 x)))

Local Bindings and Scope 11*Not just lambda sugar. We will wait to define it precisely later.

Better style:
(define (count-up-from-1 x)

(letrec
([count-to-x

(lambda (from)
(if (= from x)

(cons x null)
(cons from

(count-to-x (+ from 1) x))))])
(count-to-x 1)))

• Functions can use bindings in the environment
where they are defined: count-to-x can use x.

• Unnecessary parameters are usually bad style:
– to in previous example

Local Bindings and Scope 12

Nested functions: style

Good style to define helper functions inside
the functions they help if they are:
– Unlikely to be useful elsewhere
– Likely to be misused if available elsewhere
– Likely to be changed or removed later

Trade-off in code design:
– reusing code saves effort and avoids bugs
–makes the reused code harder to change later

Local Bindings and Scope 13

Avoid repeated recursion
Consider this code and the recursive calls it makes

– Ignore calls to first, rest, and null?
(small constant amounts of work)

Local Bindings and Scope 14

(define (bad-max xs)
(if (null? xs)

null ; not defined on empty list
(if (null? (rest xs))

(first xs)
(if (> (first xs)

(bad-max (rest xs)))
(first xs)
(bad-max (rest xs))))))

Fast vs. unusable

Local Bindings and Scope 15

bm 50,…

(if (> (first xs)
(bad-max (rest xs)))

(first xs)
(bad-max (rest xs)))

bm 49,… bm 48,… bm 1

bm 1,… bm 2,… bm 3,… bm 50

…

bm 50

250

timesbm 2,…

bm 3,…

bm 3,…

bm 3,…

(bad-max (range 1 51))

(bad-max (range 50 0 -1))

Assume 10-7 seconds each
Then: 50 x 10-7 sec vs 1.12 x 108 sec = 3.5 years
(bad-max (list 1 2 … 100)) takes > 4 x 1015 years.
Our sun is predicted to die in about 5 x 109 years.

O(2n)

Efficient max

Local Bindings and Scope 16

(define (good-max xs)
(if (null? xs)

null ; not defined on empty list
(if (null? (first xs))

(first xs)
(let ([rest-max (good-max (rest xs))])

(if (> (first xs) rest-max)
(first xs)
rest-max)))))

gm 50,… gm 49,… gm 48,… gm 1

gm 1,… gm 2,… gm 3,… gm 50

Efficient and concise max

Local Bindings and Scope 17

(define (maxlist xs)
(if (null? xs)

null ; not defined on empty list
(max (first xs) (maxlist (rest xs)))))

; even better implementations to come later

