
CS 251 Fall 2019
Principles of Programming Languages
Ben Woodλ CS 251 Spring 2020
Principles of Programming Languages
Ben Woodλ

https://cs.wellesley.edu/~cs251/s20/

Lexical Scope
and Function Closures

+closures.rkt

Lexical Scope and Function Closures 1

Topics

• Lexical vs dynamic scope
• Closures implement lexical scope.
• Design considerations: why lexical scope?
• Relevant design dimensions

Lexical Scope and Function Closures 2

A question of scope (warmup)

Lexical Scope and Function Closures 3

What is the argument value passed to
this function application?

(define x 1)
(define f (lambda (y) (+ x y)))
(define z

(let ([x 2]
[y 3])

(f (+ x y))))

A question of scope

Lexical Scope and Function Closures 4

What is the value of x when this function body
is evaluated for this function application?

(define x 1)
(define f (lambda (y) (+ x y)))
(define z

(let ([x 2]
[y 3])

(f (+ x y))))

A question of free variables

Lexical Scope and Function Closures 5

To what bindings do free variables of a function
refer when the function is applied?

(define x 1)
(define f (lambda (y) (+ x y)))
(define z

(let ([x 2]
[y 3])

(f (+ x y))))

x is a free variable
of the lambda expression.

A variable, x, is free in an expression, e, if x is referenced in e
outside the scope of any binding of x within e.

Answer 1: lexical (static) scope

Lexical Scope and Function Closures 6

Free variables of a function refer to bindings in
the environment where the function is defined,
regardless of where it is applied.

(define x 1)
(define f (lambda (y) (+ x y)))
(define z

(let ([x 2]
[y 3])

(f (+ x y))))

x is a free variable
of the lambda expression.

A variable, x, is free in an expression, e, if x is referenced in e
outside the scope of any binding of x within e.

Answer 2: dynamic scope

Lexical Scope and Function Closures 7

Free variables of a function refer to bindings in
the environment where the function is applied,
regardless of where it is defined.

(define x 1)
(define f (lambda (y) (+ x y)))
(define z

(let ([x 2]
[y 3])

(f (+ x y))))

x is a free variable
of the lambda expression.

A variable, x, is free in an expression, e, if x is referenced in e
outside the scope of any binding of x within e.

Answer 2: dynamic scope

Lexical Scope and Function Closures 8

Free variables of a function refer to bindings in
the environment where the function is applied,
regardless of where it is defined.

(define x 1)
(define f (lambda (y) (+ x y)))
(define z

(let ([x 2]
[y 3])

(f (+ x y))))

x is a free variable
of the lambda expression.

A variable, x, is free in an expression, e, if x is referenced in e
outside the scope of any binding of x within e.

Closures implement
lexical scope.

Closures allow functions to use any binding in
the environment where the function is defined,
regardless of where it is applied.

Lexical Scope and Function Closures 9

Anonymous function definition expressions

Syntax: (lambda (x1 … xn) e)

– parameters: x1 through xn are identifiers
– body: e is any expression

Evaluation:
1. The result is a function closure, ⟨E, (lambda (x1 … xn) e)⟩,

holding the current environment, E, and the function.

Note:
– An anonymous function definition is an expression.
– A function closure is a new kind of value. Closures are not expressions.
– This is a definition, not a call. The body, e, is not evaluated now.
– lambda from the λ-calculus. Lexical Scope and Function Closures 10

E ⊢ (lambda (x1 … xn) e) ↓ ⟨E, (lambda (x1 … xn) e)⟩
[closure]

Week 1

Function application (call)
Syntax: (e0 e1 ... en)

Evaluation:
1. Under the current dynamic environment, E,

evaluate e0 through en to values v0, …, vn.
2. If v0 is a function closure of n arguments,

⟨E', (lambda (x1 … xn) e)⟩ then
The result is the result of evaluating the closure
body, e, under the closure environment, E',
extended with argument bindings:
x1⟼ v1, …, xn⟼ vn.

Otherwise, there is a type error.
Functions 11

Week 1

Function application (call)

Syntax: (e0 e1 … en)

Evaluation:

Functions 12

E ⊢ e0 ↓ ⟨E', (lambda (x1 … xn) e)⟩
E ⊢ e1 ↓ v1

…
E ⊢ en ↓ vn
x1 ⟼ v1, …, xn ⟼ vn, E' ⊢ e ↓ v

E ⊢ (e0 e1 … en) ↓ v
[apply]

Week 1

(define x 1)

(define (f y)

(let ([x (+ y 1)])

(lambda (z)
(+ x y z)))

(define z (let ([x 3]
[g (f 4)]
[y 5])

(g 6)))

Example:
returning a function

Lexical Scope and Function Closures 13

env pointer
shows env structure, by pointing to
“rest of environment”
binding
maps variable name to value

def
de

f Current evaluation step:

Current environment:

(define x 1)

(define (f y)

(let ([x (+ y 1)])

(lambda (z)
(+ x y z)))

(define z (let ([x 3]
[g (f 4)]
[y 5])

(g 6)))

Example:
returning a function

Lexical Scope and Function Closures 14

env pointer
shows env structure, by pointing to
“rest of environment”
binding
maps variable name to value

x 1
def

de
f

env

(define x 1)

(define (f y)

(let ([x (+ y 1)])

(lambda (z)
(+ x y z)))

(define z (let ([x 3]
[g (f 4)]
[y 5])

(g 6)))

Example:
returning a function

Lexical Scope and Function Closures 15

env pointer
shows env structure, by pointing to
“rest of environment”
binding
maps variable name to value

x 1

f
def

de
f

(lambda (y)
(let ([x (+ y 1)])
(lambda (z)
(+ x y z))))

env

(define x 1)

(define (f y)

(let ([x (+ y 1)])

(lambda (z)
(+ x y z)))

(define z (let ([x 3]
[g (f 4)]
[y 5])

(g 6)))

Example:
returning a function

Lexical Scope and Function Closures 16

env pointer
shows env structure, by pointing to
“rest of environment”
binding
maps variable name to value

x 1

f
def

le
t

letde
f

(lambda (y)
(let ([x (+ y 1)])
(lambda (z)
(+ x y z))))

env

(define x 1)

(define (f y)

(let ([x (+ y 1)])

(lambda (z)
(+ x y z)))

(define z (let ([x 3]
[g (f 4)]
[y 5])

(g 6)))

Example:
returning a function

Lexical Scope and Function Closures 17

env pointer
shows env structure, by pointing to
“rest of environment”
binding
maps variable name to value

x 1

3

f

x

def

let

de
f

let

(lambda (y)
(let ([x (+ y 1)])
(lambda (z)
(+ x y z))))

env

(define x 1)

(define (f y)

(let ([x (+ y 1)])

(lambda (z)
(+ x y z)))

(define z (let ([x 3]
[g (f 4)]
[y 5])

(g 6)))

Example:
returning a function

Lexical Scope and Function Closures 18

env pointer
shows env structure, by pointing to
“rest of environment”
binding
maps variable name to value

x 1

3

f

x

y 4

def

let

let

de
f

app

app
(lambda (y)
(let ([x (+ y 1)])
(lambda (z)
(+ x y z))))

app

env

(define x 1)

(define (f y)

(let ([x (+ y 1)])

(lambda (z)
(+ x y z)))

(define z (let ([x 3]
[g (f 4)]
[y 5])

(g 6)))

Example:
returning a function

Lexical Scope and Function Closures 19

env pointer
shows env structure, by pointing to
“rest of environment”
binding
maps variable name to value

x 1

3

f

x

y 4

x 5

def

let

let

de
f

app

app

(lambda (y)
(let ([x (+ y 1)])
(lambda (z)
(+ x y z))))app

env

(define x 1)

(define (f y)

(let ([x (+ y 1)])

(lambda (z)
(+ x y z)))

(define z (let ([x 3]
[g (f 4)]
[y 5])

(g 6)))

Example:
returning a function

Lexical Scope and Function Closures 20

env pointer
shows env structure, by pointing to
“rest of environment”
binding
maps variable name to value

x 1

3

f

x

y 4

x 5

env
(lambda (z)

(+ x y z))

def

let

let

de
f

appap
p

(lambda (y)
(let ([x (+ y 1)])
(lambda (z)
(+ x y z))))

ap
p

env

(define x 1)

(define (f y)

(let ([x (+ y 1)])

(lambda (z)
(+ x y z)))

(define z (let ([x 3]
[g (f 4)]
[y 5])

(g 6)))

Example:
returning a function

Lexical Scope and Function Closures 21

env pointer
shows env structure, by pointing to
“rest of environment”
binding
maps variable name to value

x 1

3

f

x

y 4

x 5

env
(lambda (z)

(+ x y z))

g

def

let

let

de
f

(lambda (y)
(let ([x (+ y 1)])
(lambda (z)
(+ x y z))))

env

(define x 1)

(define (f y)

(let ([x (+ y 1)])

(lambda (z)
(+ x y z)))

(define z (let ([x 3]
[g (f 4)]
[y 5])

(g 6)))

Example:
returning a function

Lexical Scope and Function Closures 22

env pointer
shows env structure, by pointing to
“rest of environment”
binding
maps variable name to value

x 1

3

f

x

y 4

x 5

env
(lambda (z)

(+ x y z))

y 5

g

def

let

let

de
f

(lambda (y)
(let ([x (+ y 1)])
(lambda (z)
(+ x y z))))

env

(define x 1)

(define (f y)

(let ([x (+ y 1)])

(lambda (z)
(+ x y z)))

(define z (let ([x 3]
[g (f 4)]
[y 5])

(g 6)))

Example:
returning a function

Lexical Scope and Function Closures 23

env pointer
shows env structure, by pointing to
“rest of environment”
binding
maps variable name to value

x 1

3

f

x

y 4

x 5

env
(lambda (z)

(+ x y z))

y 5

g

z 6

def

let
app

app

let

de
f

app

(lambda (y)
(let ([x (+ y 1)])
(lambda (z)
(+ x y z))))

env

(define x 1)

(define (f y)

(let ([x (+ y 1)])

(lambda (z)
(+ x y z)))

(define z (let ([x 3]
[g (f 4)]
[y 5])

(g 6)))

Example:
returning a function

Lexical Scope and Function Closures 24

env pointer
shows env structure, by pointing to
“rest of environment”
binding
maps variable name to value

x 1

3

f

x

y 4

x 5

env
(lambda (z)

(+ x y z))

y 5

g

z 6

def

let
app ap

p

ap
p

15let

de
f

(lambda (y)
(let ([x (+ y 1)])
(lambda (z)
(+ x y z))))

env

(define x 1)

(define (f y)

(let ([x (+ y 1)])

(lambda (z)
(+ x y z)))

(define z (let ([x 3]
[g (f 4)]
[y 5])

(g 6)))

(lambda (y)
(let ([x (+ y 1)])
(lambda (z)
(+ x y z))))

Example:
returning a function

Lexical Scope and Function Closures 25

env pointer
shows env structure, by pointing to
“rest of environment”
binding
maps variable name to value

x 1

3

f

x

y 4

x 5

env
(lambda (z)

(+ x y z))

y 5

g

z 6

z 15def

def

Debrief

1. Closures implement lexical scope.
2. Function bodies can use bindings from the

environment where they were defined, not
where they were applied.

3. The environment is not a stack.
– Multiple environments (branches) may be live

simultaneously.
– CS 240's basic stack model will not suffice.
– General case: heap-allocate the environment.

GC will clean up for us!

Lexical Scope and Function Closures 26

PL design quiz

Java methods and C functions do not need
closures because they _________________.

a. cannot refer to names defined outside the
method/function

b. are not first class values
c. do not use lexical scope
d. are not anonymous (i.e., they are named)

Which, if any, are correct? Why?
Lexical Scope and Function Closures 27

Why lexical scope?

Lexical scope: use environment where function is defined.

Dynamic scope: use environment where function is applied.

History has shown that lexical scope is almost always better.

Here are some precise, technical reasons (not opinion).

Lexical Scope and Function Closures 28

Why lexical scope?
1. Function meaning does not depend on name choices.

Example: change body of f to replace x with q.
– Lexical scope: it cannot matter
– Dynamic scope: depends how result is used

(define (f y)
(let ([x (+ y 1)])
(lambda (z) (+ x y z))))

Example: remove unused variables.
– Dynamic scope: but maybe some g uses it (weird).

(define (f g)
(let ([x 3])

(g 2)))

Lexical Scope and Function Closures 29

(!) It is important in
both cases that no
other variable named
q is used in f.

Why lexical scope?
2. Functions can be understood fully where defined.

There are no "hidden parameters."

Example:
– Under dynamic scope:

tries to add #f, unbound variable y, and 4.

(define (f y)
(let ([x (+ y 1)])

(lambda (z) (+ x y z))
(define x #f)
(define g (f 7))
(define a (g 4))

Lexical Scope and Function Closures 30

Why lexical scope?

3a. Closures automatically “remember” the data they need.

Lexical Scope and Function Closures 31

(define (greater-than-x x)
(lambda (y) (> y x)))

(define (no-negs xs)
(filter (greater-than-x -1) xs))

(define (all-greater xs n)
(filter (lambda (x) (> x n)) xs))

Why lexical scope?

3b. Closures are a useful way to avoid recomputation.

These functions filter lists of lists by length.

How many times is the length function called during all-shorter…?

Lexical Scope and Function Closures 32

(define (all-shorter-than-1 lists mine)
(filter (lambda (xs) (< (length xs) (length mine))) lists))

(define (all-shorter-than-2 lists mine)
(let ([len (length mine)])
(filter (lambda (xs) (< (length xs) len)) lists)))

Dynamic scope?
Lexical scope is definitely the right default for variables.

– Nearly all modern languages

Early LISP used dynamic scope.
– Even though inspiration (lambda calculus) has lexical scope.
– Later "fixed" by Scheme (Racket's parent) and other languages.
– Emacs Lisp still uses dynamic scope.

Dynamic scope is very occasionally convenient:
– Racket has a special way to do it.
– Perl has something similar.
– Most languages are purely lexically scoped.
– Exception raise/handle, throw/catch is like dynamic scope.

Lexical Scope and Function Closures 33

Remember when things evaluate!

A function body is not evaluated until the function is called.

A function body is evaluated every time the function is called.

A function call's arguments are evaluated before the called
function's body.

A binding evaluates its expression when the binding is evaluated,
not every time the variable is used.

As with lexical/dynamic scope, there are other options here that Racket
does not use. We will consider some later.

Lexical Scope and Function Closures 34

Relevant PL design dimensions
in the Racket language:

– scope: lexical (static)
• vs. dynamic

– parameter passing: pass-by-value (call-by-value)
• vs. by-reference, by-name, by-need

– evaluation order: eager (strict)
• vs. lazy

in our definitions of the Racket language (subset):
– environments and closures

• vs. substitution
– big-step operational semantics

• vs. small-step

More on all of these dimensions (and alternatives) later!

Lexical Scope and Function Closures 35

