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Topics

• Lexical vs dynamic scope
• Closures implement lexical scope.
• Design considerations: why lexical scope?
• Relevant design dimensions
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A question of scope (warmup)
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What is the argument value passed to
this function application?

(define x 1)
(define f (lambda (y) (+ x y)))
(define z

(let ([x 2]
[y 3])

(f (+ x y))))

A question of scope
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What is the value of x when this function body
is evaluated for this function application?

(define x 1)
(define f (lambda (y) (+ x y)))
(define z

(let ([x 2]
[y 3])

(f (+ x y))))



A question of free variables
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To what bindings do free variables of a function 
refer when the function is applied?

(define x 1)
(define f (lambda (y) (+ x y)))
(define z

(let ([x 2]
[y 3])

(f (+ x y))))

x is a free variable
of the lambda expression.

A variable, x, is free in an expression, e, if x is referenced in e
outside the scope of any binding of x within e.

Answer 1: lexical (static) scope
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Free variables of a function refer to bindings in 
the environment where the function is defined, 
regardless of where it is applied.

(define x 1)
(define f (lambda (y) (+ x y)))
(define z

(let ([x 2]
[y 3])

(f (+ x y))))

x is a free variable
of the lambda expression.

A variable, x, is free in an expression, e, if x is referenced in e
outside the scope of any binding of x within e.

Answer 2: dynamic scope
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Free variables of a function refer to bindings in 
the environment where the function is applied, 
regardless of where it is defined.

(define x 1)
(define f (lambda (y) (+ x y)))
(define z

(let ([x 2]
[y 3])

(f (+ x y))))

x is a free variable
of the lambda expression.

A variable, x, is free in an expression, e, if x is referenced in e
outside the scope of any binding of x within e.

Answer 2: dynamic scope
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Free variables of a function refer to bindings in 
the environment where the function is applied, 
regardless of where it is defined.

(define x 1)
(define f (lambda (y) (+ x y)))
(define z

(let ([x 2]
[y 3])

(f (+ x y))))

x is a free variable
of the lambda expression.

A variable, x, is free in an expression, e, if x is referenced in e
outside the scope of any binding of x within e.



Closures implement 
lexical scope.

Closures allow functions to use any binding in 
the environment where the function is defined, 
regardless of where it is applied.
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Anonymous function definition expressions

Syntax: (lambda (x1 … xn) e)

– parameters: x1 through xn are identifiers
– body: e is any expression

Evaluation:
1. The result is a function closure, ⟨E, (lambda (x1 … xn) e)⟩, 

holding the current environment, E, and the function.

Note:
– An anonymous function definition is an expression.
– A function closure is a new kind of value. Closures are not expressions.
– This is a definition, not a call. The body, e, is not evaluated now.
– lambda from the λ-calculus. Lexical Scope and Function Closures 10

E ⊢ (lambda (x1 … xn) e) ↓ ⟨E, (lambda (x1 … xn) e)⟩
[closure]

Week 1

Function application (call)
Syntax: (e0 e1 ... en)

Evaluation:
1. Under the current dynamic environment, E,

evaluate e0 through en to values v0, …, vn.
2. If v0 is a function closure of n arguments,

⟨E', (lambda (x1 … xn) e)⟩ then
The result is the result of evaluating the closure 
body, e, under the closure environment, E',
extended with argument bindings:
x1⟼ v1, …, xn⟼ vn.

Otherwise, there is a type error.
Functions 11

Week 1

Function application (call)

Syntax: (e0 e1 … en)

Evaluation:
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E ⊢ e0 ↓ ⟨E', (lambda (x1 … xn) e)⟩
E ⊢ e1 ↓ v1

…
E ⊢ en ↓ vn
x1 ⟼ v1, …, xn ⟼ vn, E' ⊢ e ↓ v

E ⊢ (e0 e1  …  en) ↓ v
[apply]

Week 1



(define x 1)

(define (f y)

(let ([x (+ y 1)])

(lambda (z)
(+ x y z)) )

(define z (let ([x 3]
[g (f 4)]
[y 5])

(g 6) ))

Example:
returning a function
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env pointer
shows env structure, by pointing to
“rest of environment”
binding
maps variable name to value

def
de

f Current evaluation step:

Current environment:
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(g 6) ))

Example:
returning a function
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env pointer
shows env structure, by pointing to
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env
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env pointer
shows env structure, by pointing to
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binding
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Debrief

1. Closures implement lexical scope.
2. Function bodies can use bindings from the 

environment where they were defined, not 
where they were applied.

3. The environment is not a stack.
– Multiple environments (branches) may be live 

simultaneously.
– CS 240's basic stack model will not suffice.
– General case: heap-allocate the environment. 

GC will clean up for us!
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PL design quiz

Java methods and C functions do not need 
closures because they _________________.

a. cannot refer to names defined outside the 
method/function

b. are not first class values
c. do not use lexical scope
d. are not anonymous (i.e., they are named)

Which, if any, are correct? Why?
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Why lexical scope?

Lexical scope: use environment where function is defined.

Dynamic scope: use environment where function is applied.

History has shown that lexical scope is almost always better.

Here are some precise, technical reasons (not opinion).
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Why lexical scope?
1. Function meaning does not depend on name choices.

Example: change body of f to replace x with q.
– Lexical scope: it cannot matter
– Dynamic scope: depends how result is used

(define (f y)
(let ([x (+ y 1)])
(lambda (z) (+ x y z))))

Example: remove unused variables.
– Dynamic scope: but maybe some g uses it (weird).

(define (f g)
(let ([x 3])

(g 2)))
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(!) It is important in 
both cases that no 
other variable named 
q is used in f.

Why lexical scope?
2. Functions can be understood fully where defined.

There are no "hidden parameters."

Example: 
– Under dynamic scope:

tries to add #f, unbound variable y, and 4.

(define (f y)
(let ([x (+ y 1)])

(lambda (z) (+ x y z))
(define x #f)
(define g (f 7))
(define a (g 4))
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Why lexical scope?

3a. Closures automatically “remember” the data they need.
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(define (greater-than-x x)
(lambda (y) (> y x)))

(define (no-negs xs)
(filter (greater-than-x -1) xs))

(define (all-greater xs n)
(filter (lambda (x) (> x n)) xs))

Why lexical scope?

3b. Closures are a useful way to avoid recomputation.

These functions filter lists of lists by length.

How many times is the length function called during all-shorter…?
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(define (all-shorter-than-1 lists mine)
(filter (lambda (xs) (< (length xs) (length mine)))  lists))

(define (all-shorter-than-2 lists mine)
(let ([len (length mine)])
(filter (lambda (xs) (< (length xs) len)) lists)))



Dynamic scope?
Lexical scope is definitely the right default for variables.

– Nearly all modern languages

Early LISP used dynamic scope.
– Even though inspiration (lambda calculus) has lexical scope.
– Later "fixed" by Scheme (Racket's parent) and other languages.
– Emacs Lisp still uses dynamic scope.

Dynamic scope is very occasionally convenient:
– Racket has a special way to do it.
– Perl has something similar.
– Most languages are purely lexically scoped.
– Exception raise/handle, throw/catch is like dynamic scope.
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Remember when things evaluate!

A function body is not evaluated until the function is called.

A function body is evaluated every time the function is called.

A function call's arguments are evaluated before the called 
function's body.

A binding evaluates its expression when the binding is evaluated,
not every time the variable is used.

As with lexical/dynamic scope, there are other options here that Racket 
does not use. We will consider some later.
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Relevant PL design dimensions
in the Racket language:

– scope: lexical (static)
• vs. dynamic

– parameter passing: pass-by-value (call-by-value)
• vs. by-reference, by-name, by-need

– evaluation order: eager (strict)
• vs. lazy

in our definitions of the Racket language (subset):
– environments and closures

• vs. substitution
– big-step operational semantics

• vs. small-step

More on all of these dimensions (and alternatives) later!
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