
CS 251 Fall 2019
Principles of Programming Languages
Ben Woodλ CS 251 Spring 2020
Principles of Programming Languages
Ben Woodλ

https://cs.wellesley.edu/~cs251/s20/

Defining Racket:
Pairs, Lists, and GC

+lists.rkt

Pairs, Lists, and GC 1

Topics

• Compound values:
• Cons cell: pair of values
• List: ordered sequence of parts

• Programming with pairs and lists
• Implementation consideration:

garbage collection (GC)

Pairs, Lists, and GC 2

Pairs: cons cells
Construct a cons cell holding 2 values:
cons built-in function, takes 2 arguments

Access parts:
car built-in function, takes 1 argument

returns first (left) part if argument is a cons cell
cdr built-in function, takes 1 argument

returns second (right) part if argument is a cons cell

mnemonic: car precedes cdr in alphabetic order

Names due to the IBM 704 computer assembler language
(used for first Lisp implementation, 1950s)
contents of the address/decrement part of register number

Pairs, Lists, and GC 3

cons expressions build cons cells

Syntax: (cons e1 e2)

Evaluation:
1. Evaluate e1 to a value v1.
2. Evaluate e2 to a value v2.
3. The result is a cons cell containing v1 as the left

value and v2 as the right value: (cons v1 v2)

Pairs, Lists, and GC 4

E ⊢ e1 ↓ v1
E ⊢ e2 ↓ v2

E ⊢ (cons e1 e2) ↓ (cons v1 v2)
[cons]

cons is a function, so why
define evaluation rules?

cons cells are values

Syntax: (cons v1 v2)
- (cons 17 42)
- (cons 3.14159 #t)
- (cons (cons 3 4.5) (cons #f 5))

So is (cons 17 42) a function application
expression or a value?

e ::= v | …

Pairs, Lists, and GC 5

cons cell diagrams

Pairs, Lists, and GC 6

(cons v1 v2) v1 v2
Convention: put “small” values (numbers, booleans, characters) inside a box,
and draw a pointers to “large” values (functions, strings, pairs) outside a box.

(cons (cons 17 (cons "cat" 6))
(cons #t (lambda (x) (* 2 x))))

17

6

"cat"

#t

⟨E, (lambda (x) (* 2 x))⟩

car and cdr expressions
Syntax: (car e)
Evaluation:

1. Evaluate e to a cons cell.
2. The result is the left value in the cons cell.

Syntax: (cdr e)
Evaluation:

1. Evaluate e to a cons cell.
2. The result is the right value in the cons cell.

Pairs, Lists, and GC 7

E ⊢ e ↓ (cons v1 v2)
E ⊢ (car e) ↓ v1 [car]

E ⊢ e ↓ (cons v1 v2)
E ⊢ (cdr e) ↓ v2 [cdr]

Practice with car and cdr

Pairs, Lists, and GC 8

(define tr (cons (cons 17 (cons "cat" 6))
(cons #t (lambda (x) (* 2 x))))

17

6

"cat"

#t

Write expressions using car, cdr, and tr that extract the five
leaves of this tree:

tr ⟼

tr ⟼ (cons (cons 17 (cons "cat" 6))
(cons #t (lambda (x) (* 2 x)))), …

⟨E, (lambda (x) (* 2 x)⟩

Rule check

What is the result of evaluating this expression?

(car (cons (+ 2 3) (cdr 4)))

Pairs, Lists, and GC 9

Examples

What are the values of these expressions?
(swap-pair (cons 1 2))
(sort-pair (cons 4 7))
(sort-pair (cons 8 5))

Pairs, Lists, and GC 10

(define (swap-pair pair)
(cons (cdr pair) (car pair)))

(define (sort-pair pair)
(if (< (car pair) (cdr pair))

pair
(swap pair)))

Lists

A list is one of:
– The empty list: null
– A pair of the first element, vfirst, and a smaller

list, vrest, containing the rest of the elements:
(cons vfirst vrest)

A list of the numbers 7, 2, and 4:
(cons 7 (cons 2 (cons 4 null)))

Pairs, Lists, and GC 11

List diagrams

Pairs, Lists, and GC 12

v1 v2 vn⋯

7 2 4

These n cons cells form the “spine” of the list

The slash means this
slot contains null

list as sugar*

• (list) desugars to null
• (list e1 …) desugars to (cons e1 (list …))

Example: (list (+ 1 2) (* 3 4) (< 5 6))

desugars to (cons (+ 1 2) (list (* 3 4) (< 5 6)))

desugars to (cons (+ 1 2) (cons (* 3 4) (list (< 5 6))))

desugars to (cons (+ 1 2) (cons (* 3 4) (cons (< 5 6) (list))))

desugars to (cons (+ 1 2) (cons (* 3 4) (cons (< 5 6) null)))

Pairs, Lists, and GC 13
* Close enough for now, but actually a variable-argument function.

optional
Quoted notation (only the basics)
Symbols are values: 'a

where a is any valid identifier or other primitive value
number and boolean symbols identical to values: '#f is #f

Atoms: symbols, numbers, booleans, null

Quoted notation of cons/list values:
• A cons cell(cons 1 2) is displayed '(1 . 2)
• null is displayed '()
• A cons cell(cons 1 null) is displayed '(1)
• A cons cell(cons 1 (cons 2 null)) is displayed '(1 2)
• (list 1 2 3) is displayed '(1 2 3)
• '(cons 1 2) is the same as (list 'cons '1 '2)
• (cons (cons 1 2) (cons 3 4)) is displayed

'((1 . 2) 3 . 4)

Pairs, Lists, and GC 14

Read Racket docs for more.

List practice: notation
(define LOL

(list (list 17 19)
(list 23 42 57)
(list 115 (list 111 230 235 251 301) 240 342)))

1. Draw the diagram for the value bound to LOL.
2. Write the printed representation of the value bound to LOL.
3. Give expressions using LOL (and no number values) that evaluate to the

following values: 19, 23, 57, 251, '(235 251 301)
4. Write the the result of evaluating:

(+ (length LOL)
(length (third LOL))
(length (second (third LOL))))

Pairs, Lists, and GC 15

append
The append function takes two lists as arguments
and returns a list of all the elements of the first list
followed by all the elements of the second list.

Pairs, Lists, and GC 16

7 2 4 8 3

8 3

L1 L2

(append L1 L2)
Note the sharing!
Preview of why (im)mutability matters.

(define L1 (list 8 3))
(define L2 (list 7 2 4))

List practice: representation
(define L1 '(7 2 4))
(define L2 '(8 3 5))

For each of the following three lists:
1. Draw the diagram for its value.
2. Indicate the number of cons cells created for its value.

(Don't count pre-existing cons cells.)
3. Write the quoted notation for its value.
4. Determine the list length of its value .

(define L3 (cons L1 L2))
(define L4 (list L1 L2))
(define L5 (append L1 L2))

Pairs, Lists, and GC 17

List practice: lists.rkt
• Recursive list functions

Pairs, Lists, and GC 18

Implementation: memory management

Who cleans up all those cons cells when we're done with them?

Pairs, Lists, and GC 19

1

2

3 null

(car (cons 1 (cons 2 (cons 3 null))))

subexpression result

subexpression result

subexpression result

expression result

Cons cells stored in heap.

CS 240-style machine model

Pairs, Lists, and GC 20

Registers

Stack
Pointer

Program
Counter

StackCode

Heap

Call frame

fix
ed

 s
iz

e,
 g

en
er

al
 p

ur
po

se
Call frame

Call frame

arguments, variables,
return address
per function call

cons cells,
data structures, …

Implementation: memory management

Who cleans up all those cons cells when we're done with them?

Pairs, Lists, and GC 21

(car (cons 1 (cons 2 (cons 3 null)))) ↓ 1

Garbage:
cells that will never be used again,
but still occupy storage space.

1

2

3 null

Garbage Collection (GC)

• A cell or object is garbage once the
remainder of evaluation will never access it.

• Garbage collection:
Reclaim space used by garbage.

• Required/invented to implement Lisp.
• Immutability ⇒ fresh copies
• Rapid allocation, rapid garbage creation

Pairs, Lists, and GC 22

GC: Reachability
Goal: Reclaim storage used for all garbage cells.

Reality? (let ([garbage (list 1 2 3)])
(if e (length garbage) 0)

Achievable goal: Reclaim storage used for all unreachable cells.
• All unreachable cells are garbage.
• Some garbage cells are reachable.

A cell is reachable if it is:
• a subexpression of the expression currently being evaluated; or
• bound in the current environment*; or
• bound in the environment of any reachable closure; or
• the referent of the car or cdr of any reachable cons cell.

Pairs, Lists, and GC 23

roots
recursive

heap
cases

*roughly

GC: Reachability
Who cleans up all those cons cells when we're done with them?

Pairs, Lists, and GC 24

(car (cons 1 (cons 2 (cons 3 null)))) ↓ 1

Garbage:
unreachable cells

1

2

3 null
You will read more about GC on the next assignment.

