
CS 251 Fall 2019
Principles of Programming Languages
Ben Woodλ CS 251 Spring 2020
Principles of Programming Languages
Ben Woodλ

https://cs.wellesley.edu/~cs251/s20/

Tail Recursion
+tail.rkt

Tail Recursion 1

Topics

Recursion is an elegant and natural match for many
computations and data structures.

• Natural recursion with immutable data can be space-
inefficient compared to loop iteration with mutable data.

• Tail recursion eliminates the space inefficiency with a
simple, general pattern.

• Recursion over immutable data expresses iteration more
clearly than loop iteration with mutable state.

• More higher-order patterns: fold

Tail Recursion 2

Naturally recursive factorial

Tail Recursion 3

(define (fact n)
(if (= n 0)

1
(* n (fact (- n 1)))))

Space: O()

Time: O()
How efficient is this implementation?

CS 240-style machine model

Tail Recursion 4

Registers

Stack
Pointer

Program
Counter

StackCode

Heap

Call frame

fix
ed

 s
iz

e,
 g

en
er

al
 p

ur
po

se
Call frame

Call frame

arguments, variables,
return address
per function call

cons cells,
data structures, …

Evaluation
example

Tail Recursion 5

(fact 3): 3*_(fact 3)

(fact 2)

(fact 3): 3*_ (fact 3): 3*_

(fact 2): 2*_

(fact 1)

(fact 2): 2*_

(fact 1): 1*_

(fact 0)

(fact 3): 3*_

(fact 2): 2*_

(fact 1): 1*_

(fact 0): 1

(fact 3): 3*_

(fact 2): 2*_

(fact 1): 1*1

(fact 3): 3*_

(fact 2): 2*1

(fact 3): 3*2

Remember: n ↦ 2; and
“rest of function” for this call.

Space: O()

Time: O()

(define (fact n)
(if (= n 0)

1
(* n (fact (- n 1)))))

Call stacks at each step

Naturally recursive factorial

Tail Recursion 6

(define (fact n)

(if (= n 0)
1
(* n (fact (- n 1)))))

Base case returns
base result.

Compute remaining argument
before/for recursive call.

Recursive case returns
result so far.

Compute result so far
after/from recursive call.

Tail recursive factorial

Tail Recursion 7

(define (fact n)
(define (fact-tail n acc)

(if (= n 0)
acc
(fact-tail (- n 1) (* n acc))))

(fact-tail n 1))

Compute remaining argument
before/for recursive call.

Base case returns
full result.

Initial accumulator
provides base result.

Accumulator parameter
provides result so far.

Recursive case returns
full result.

Compute result so far
before/for recursive call.

Common patterns of work

Tail Recursion 8

Natural recursion: Tail recursion:

Reduce
argument

Accumulate
result
so far

Argument

Base result

Full result

Reduce
argument

Accumulate
result
so far

Argument

Full result

Base result
D

ee
pe

r r
ec

ur
si

ve
 c

al
ls

Base case Base case

Natural
recursion

Tail Recursion 9

(fact 4): 24

(fact 3): 6

(fact 2): 2

(fact 1): 1

(fact 0): 1

-1

-1

-1

-1

reduce

ac
cu

m
ul

at
e*

*

*

*

(define (fact n)
(if (= n 0)

1
(* n (fact (- n 1)))))

full resultargument

base resultbase case

Recursive case:
Compute result
in terms of argument and
accumulated recursive result.

Tail
recursion

Tail Recursion 10

(fact-tail 4 1): 24

(fact-tail 3 4): 24

(fact-tail 2 12): 24

(fact-tail 1 24): 24

(fact-tail 0 24): 24

-1

-1

-1

-1

reduce

ac
cu

m
ul

at
e*

*

*

*

(define (fact n)
(define (fact-tail n acc)

(if (= n 0)
acc
(fact-tail (- n 1) (* n acc))))

(fact-tail n 1))

full result

base result

base case

argument

Recursive case:
Compute recursive argument
in terms of argument and
accumulator.

Evaluation example

Tail Recursion 11

(fact 3): _ (fact 3)

(ft 3 1)

(fact 3): _

(ft 3 1):_

(ft 2 3)

(fact 3): _

(ft 3 1):_

(ft 2 3):_

(ft 1 6)

(fact 3): _

(ft 3 1):_

(ft 2 3):_

(ft 1 6):_

(ft 0 6)

(fact 3): _

(ft 3 1):_

(ft 2 3):_

(ft 1 6):_

(ft 0 6):6

(fact 3): _

(ft 3 1):_

(ft 2 3):_

(ft 6 1):6
etc.

(fact 3): _

(ft 3 1):_

(ft 2 3):6

ft = fact-tail

Nothing useful
remembered here.Call stacks at each step

Tail-call optimization

Tail Recursion 12

(fact 3) (ft 3 1) (ft 2 3) (ft 1 6) (ft 0 6)

(define (fact n)
(define (fact-tail n acc)

(if (= n 0)
acc
(fact-tail (- n 1) (* n acc))))

(fact-tail n 1))

Language implementation recognizes tail calls.
• Caller frame never needed again.
• Reuse same space for every recursive tail call.
• Low-level: acts just like a loop.

Racket, ML, most “functional” languages, but not Java, C, etc.

Space: O()

Time: O()

Tail position

Recursive definition of tail position:
– In (lambda (x1 … xn) e), the body e is in tail position.
– If (if e1 e2 e3) is in tail position,

then e2 and e3 are in tail position (but e1 is not).
– If (let ([x1 e1] … [xn en]) e) is in tail position,

then e is in tail position (but the binding expressions are not).
Note:

• If a non-lambda expression is not in tail position, then no subexpressions are.
• Critically, in a function call expression(e1 e2),

subexpressions e1 and e2 are not in tail position.

A tail call is a function call in tail position.

A function is tail-recursive if it uses a recursive tail call.

Tail Recursion 13

Tail call intuition:
“nothing left for caller to do after call”,
“callee result is immediate caller result” Tail recursion transformation

Tail Recursion 14

(define (fact n)
(if (= n 0)

1
(* n (fact (- n 1)))))

(define (fact n)
(define (fact-tail n acc)

(if (= n 0)
acc
(fact-tail (- n 1) (* n acc))))

(fact-tail n 1))

natural recursion

tail recursion

Base result becomes
initial accumulator.

Accumulator
becomes
base result.

Recursive step applied to accumulator
instead of recursive result.

Common pattern for transforming naturally recursive functions to tail-recursive form.
Works for functions that do commutative operations (order of steps doesn't matter).

Practice: use the transformation

Tail Recursion 15

;; Naturally recursive sum
(define (sum-natural xs)

(if (null? xs)
0
(+ (car xs) (sum-natural (cdr xs)))))

;; Tail-recursive sum
(define (sum-tail xs)

(define (sum-onto xs acc)
(if (null? xs)

acc
(sum-onto (cdr xs) (+ (car xs) acc)))

(sum-onto xs 0))

Transforming non-commutative steps

Tail Recursion 16

(define (reverse-natural-slow xs)
(if (null? xs)

null
(append (reverse-natural-slow (cdr xs))

(list (car xs)))))

(define (reverse-tail-just-kidding xs)
(define (rev xs acc)

(if (null? xs)
acc
(rev (cdr xs) (append acc (list (car xs))))))

(rev xs null))

✘
✓(define (reverse-tail-slow xs)

(define (rev xs acc)
(if (null? xs)

acc
(rev (cdr xs) (append (list (car xs)) acc))))

(rev xs null))

(order matters)

(define (reverse-tail-slow xs)
(define (rev xs acc)

(if (null? xs)
acc
(rev (cdr xs) (append (list (car xs)) acc))))

(rev xs null))

The transformation is not always ideal.

• Append-based recursive reverse is O(n2): each recursive call must
traverse to end of list and build a fully new list.
– 1+2+…+(n-1) is almost n*n/2
– Moral: beware append, especially within recursion

• Tail-recursive reverse can avoid append in O(n).
– Cons is O(1), done n times. Tail Recursion 17

(define (reverse-tail-good xs)
(define (rev xs acc)

(if (null? xs)
acc
(rev (cdr xs) (cons (car xs) acc))))

(rev xs null))

What about map, filter?

O(n)

O()
Tail recursion ≠ accumulator pattern

• Tail recursion and the accumulator pattern are commonly
used together. They are not synonyms.
– Natural recursion may use an accumulator.
– Tail recursion does not necessarily involve an accumulator.

Tail Recursion 18

; mutually tail recursive
(define (even n)

(or (zero? n) (odd (- n 1))))
(define (odd n)

(or (not (zero? n)) (even (- n 1))))

; tail recursive
(define (even2 n)

(cond [(= 0 n) #t]
[(= 1 n) #f]
[#t (even2 (- n 2))]))

Why tail recursion instead of
loops with mutation?
1. Simpler language, but just as efficient.
2. Explicit dependences for easier reasoning.
– Especially with HOFs like fold!

Tail Recursion 19

Identify dependences between ________.

Tail Recursion 20

(define (fib n)

(if (< n 2)

n

(+ (fib (- n 1)) (fib (- n 2)))))

(define (fib n)
(define (fib-tail n fibi fibi+1)
(if (= 0 n)

fibi
(fib-tail (- n 1) fibi+1 (+ fibi fibi+1))))

(fib n 0 1))

def fib(n):
fib_i = 0
fib_i_plus_1 = 1
for i in range(n):
fib_i_prev = fib_i
fib_i = fib_i_plus_1
fib_i_plus_1 = fib_i_prev + fib_i_plus_1

return fib_i

Python: loop iteration with mutation

Racket: immutable tail recursion

Racket: immutable natural recursion recursive
calls

loop
iterations

Identify dependences between ________.

Tail Recursion 21

(define (fib n)

(if (< n 2)

n

(+ (fib (- n 1)) (fib (- n 2)))))

(define (fib n)
(define (fib-tail n fibi fibi+1)
(if (= 0 n)

fibi
(fib-tail (- n 1) fibi+1 (+ fibi fibi+1))))

(fib n 0 1))

def fib(n):
fib_i = 0
fib_i_plus_1 = 1
for i in range(n):
fib_i_prev = fib_i
fib_i = fib_i_plus_1
fib_i_plus_1 = fib_i_prev + fib_i_plus_1

return fib_i

Python: loop iteration with mutation

Racket: immutable tail recursion

Racket: immutable natural recursion recursive
calls

loop
iterations

What must we inspect to

Fold: iterator over recursive structures

(fold_ combine init list)

accumulates result by iteratively applying
(combine element accumulator)

to each element of the list and accumulator so far
(starting from init) to produce the next accumulator.

– (foldr f init (list 1 2 3))
computes (f 1 (f 2 (f 3 init)))

– (foldl f init (list 1 2 3))
computes (f 3 (f 2 (f 1 init)))

Tail Recursion 22

(a.k.a. reduce, inject, …)

HOF HOF

Folding geometry

Tail Recursion 23

init

V ⋯1 V2 Vn-1 Vn

combine

init combine⋯

combine combine combine⋯
(foldr combine init L)

combinecombinecombine

L ⟼

(foldl combine init L)

result

result

Tail recursion

Natural recursion

Fold code: tail.rkt

• foldr implementation
• foldl implementation
• using foldr/foldl
• bonus mystery folding puzzle

Tail Recursion 24

Super-iterators!
• Not built into the language

– Just a programming pattern
– Many languages have built-in support, often allow stopping early

without resorting to exceptions

• Pattern separates recursive traversal from data processing
– Reuse same traversal, different folding functions
– Reuse same folding functions, different data structures
– Common vocabulary concisely communicates intent

• map, filter, fold + closures/lexical scope = superpower
– Later: argument function can use any “private” data in its

environment.
– Iterator does not have to know or help.

Tail Recursion 25

