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Tail Recursion
+tail.rkt
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Topics

Recursion is an elegant and natural match for many 
computations and data structures.

• Natural recursion with immutable data can be space-
inefficient compared to loop iteration with mutable data.

• Tail recursion eliminates the space inefficiency with a 
simple, general pattern.

• Recursion over immutable data expresses iteration more 
clearly than loop iteration with mutable state.

• More higher-order patterns: fold
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Naturally recursive factorial
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(define (fact n)
(if (= n 0)

1
(* n (fact (- n 1)))))

Space: O(      )

Time: O(      )
How efficient is this implementation?

CS 240-style machine model
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Evaluation
example
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(fact 3): 3*_(fact 3)

(fact 2)

(fact 3): 3*_ (fact 3): 3*_ 

(fact 2): 2*_

(fact 1)

(fact 2): 2*_ 

(fact 1): 1*_

(fact 0)

(fact 3): 3*_ 

(fact 2): 2*_ 

(fact 1): 1*_

(fact 0): 1

(fact 3): 3*_ 

(fact 2): 2*_

(fact 1): 1*1

(fact 3): 3*_

(fact 2): 2*1

(fact 3): 3*2

Remember: n ↦ 2; and
“rest of function” for this call.

Space: O(      )

Time: O(      )

(define (fact n)
(if (= n 0)

1
(* n (fact (- n 1)))))

Call stacks at each step

Naturally recursive factorial
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(define (fact n)

(if (= n 0)
1
(* n (fact (- n 1)))))

Base case returns 
base result.

Compute remaining argument 
before/for recursive call.

Recursive case returns
result so far.

Compute result so far 
after/from recursive call.

Tail recursive factorial

Tail Recursion 7

(define (fact n)
(define (fact-tail n acc)

(if (= n 0)
acc
(fact-tail (- n 1) (* n acc))))

(fact-tail n 1))

Compute remaining argument 
before/for recursive call.

Base case returns 
full result.

Initial accumulator 
provides base result.

Accumulator parameter 
provides result so far.

Recursive case returns
full result.

Compute result so far 
before/for recursive call.

Common patterns of work
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Natural recursion: Tail recursion:

Reduce
argument

Accumulate
result
so far

Argument

Base result

Full result

Reduce
argument

Accumulate
result
so far

Argument

Full result

Base result
D

ee
pe

r r
ec

ur
si

ve
 c

al
ls

Base case Base case



Natural
recursion
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(fact 4): 24

(fact 3):  6

(fact 2):  2

(fact 1):  1

(fact 0):  1
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(define (fact n)
(if (= n 0)

1
(* n (fact (- n 1)))))

full resultargument

base resultbase case

Recursive case:
Compute result
in terms of argument and
accumulated recursive result.

Tail
recursion

Tail Recursion 10

(fact-tail 4 1): 24

(fact-tail 3   4): 24

(fact-tail 2 12): 24

(fact-tail 1  24): 24

(fact-tail 0 24): 24
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(define (fact n)
(define (fact-tail n acc)

(if (= n 0)
acc
(fact-tail (- n 1) (* n acc))))

(fact-tail n 1))

full result

base result

base case

argument

Recursive case:
Compute recursive argument 
in terms of argument and 
accumulator.

Evaluation example
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(fact 3): _ (fact 3)

(ft 3 1)

(fact 3): _ 

(ft 3 1):_ 

(ft 2 3)

(fact 3): _ 

(ft 3 1):_ 

(ft 2 3):_

(ft 1 6)

(fact 3): _ 

(ft 3 1):_ 

(ft 2 3):_

(ft 1 6):_

(ft 0 6)

(fact 3): _ 

(ft 3 1):_ 

(ft 2 3):_

(ft 1 6):_

(ft 0 6):6

(fact 3): _ 

(ft 3 1):_ 

(ft 2 3):_

(ft 6 1):6
etc.

(fact 3): _ 

(ft 3 1):_ 

(ft 2 3):6

ft = fact-tail

Nothing useful 
remembered here.Call stacks at each step

Tail-call optimization
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(fact 3) (ft  3 1) (ft 2 3) (ft 1 6) (ft 0 6)

(define (fact n)
(define (fact-tail n acc)

(if (= n 0)
acc
(fact-tail (- n 1) (* n acc))))

(fact-tail n 1))

Language implementation recognizes tail calls.
• Caller frame never needed again.
• Reuse same space for every recursive tail call.
• Low-level: acts just like a loop.

Racket, ML, most “functional” languages, but not Java, C, etc.

Space: O(      )

Time: O(      )



Tail position

Recursive definition of tail position:
– In (lambda (x1 … xn) e), the body e is in tail position.
– If (if e1 e2 e3) is in tail position,

then e2 and e3 are in tail position (but e1 is not).
– If (let ([x1 e1] … [xn en]) e) is in tail position,

then e is in tail position (but the binding expressions are not).
Note:

• If a non-lambda expression is not in tail position, then no subexpressions are.
• Critically, in a function call expression(e1 e2),

subexpressions e1 and e2 are not in tail position.

A tail call is a function call in tail position.

A function is tail-recursive if it uses a recursive tail call.
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Tail call intuition:
“nothing left for caller to do after call”,
“callee result is immediate caller result” Tail recursion transformation
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(define (fact n)
(if (= n 0)

1
(* n (fact (- n 1)) ) ))

(define (fact n)
(define (fact-tail n acc )

(if (= n 0)
acc
(fact-tail (- n 1) (* n  acc ) )))

(fact-tail n 1 ))

natural recursion

tail recursion

Base result becomes 
initial accumulator.

Accumulator 
becomes 
base result.

Recursive step applied to accumulator
instead of recursive result.

Common pattern for transforming naturally recursive functions to tail-recursive form.
Works for functions that do commutative operations (order of steps doesn't matter).

Practice: use the transformation
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;; Naturally recursive sum
(define (sum-natural xs)

(if (null? xs)
0
(+ (car xs) (sum-natural (cdr xs)))))

;; Tail-recursive sum
(define (sum-tail xs)

(define (sum-onto xs acc)
(if (null? xs)

acc
(sum-onto (cdr xs) (+ (car xs) acc)))

(sum-onto xs 0))

Transforming non-commutative steps
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(define (reverse-natural-slow xs)
(if (null? xs)

null
(append (reverse-natural-slow (cdr xs))

(list (car xs)))))

(define (reverse-tail-just-kidding xs)
(define (rev xs acc)

(if (null? xs)
acc
(rev (cdr xs) (append acc (list (car xs))))))

(rev xs null))

✘
✓(define (reverse-tail-slow xs)

(define (rev xs acc)
(if (null? xs)

acc
(rev (cdr xs) (append (list (car xs)) acc))))

(rev xs null))

(order matters)



(define (reverse-tail-slow xs)
(define (rev xs acc)

(if (null? xs)
acc
(rev (cdr xs) (append (list (car xs)) acc))))

(rev xs null))

The transformation is not always ideal.

• Append-based recursive reverse is O(n2): each recursive call must 
traverse to end of list and build a fully new list.
– 1+2+…+(n-1) is almost n*n/2
– Moral: beware append, especially within recursion

• Tail-recursive reverse can avoid append in O(n).
– Cons is O(1), done n times. Tail Recursion 17

(define (reverse-tail-good xs)
(define (rev xs acc)

(if (null? xs)
acc
(rev (cdr xs) (cons (car xs) acc))))

(rev xs null))

What about map, filter?

O(n)

O(   )
Tail recursion ≠ accumulator pattern

• Tail recursion and the accumulator pattern are commonly 
used together. They are not synonyms.
– Natural recursion may use an accumulator.
– Tail recursion does not necessarily involve an accumulator.
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; mutually tail recursive
(define (even n)

(or (zero? n) (odd (- n 1))))
(define (odd n)

(or (not (zero? n)) (even (- n 1))))

; tail recursive
(define (even2 n)

(cond [(= 0 n) #t]
[(= 1 n) #f]
[#t (even2 (- n 2))]))

Why tail recursion instead of
loops with mutation?
1. Simpler language, but just as efficient.
2. Explicit dependences for easier reasoning.
– Especially with HOFs like fold!
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Identify dependences between ________.
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(define (fib n)

(if (< n 2)

n

(+ (fib (- n 1)) (fib (- n 2)))))

(define (fib n)
(define (fib-tail n fibi fibi+1)
(if (= 0 n)

fibi
(fib-tail (- n 1) fibi+1 (+ fibi fibi+1))))

(fib n 0 1))

def fib(n):
fib_i = 0
fib_i_plus_1 = 1
for i in range(n):
fib_i_prev = fib_i
fib_i = fib_i_plus_1
fib_i_plus_1 = fib_i_prev + fib_i_plus_1  

return fib_i

Python: loop iteration with mutation

Racket: immutable tail recursion

Racket: immutable natural recursion recursive 
calls

loop 
iterations



Identify dependences between ________.
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(define (fib n)

(if (< n 2)

n

(+ (fib (- n 1)) (fib (- n 2)))))

(define (fib n)
(define (fib-tail n fibi fibi+1)
(if (= 0 n)

fibi
(fib-tail (- n 1) fibi+1 (+ fibi fibi+1))))

(fib n 0 1))

def fib(n):
fib_i = 0
fib_i_plus_1 = 1
for i in range(n):
fib_i_prev = fib_i
fib_i = fib_i_plus_1
fib_i_plus_1 = fib_i_prev + fib_i_plus_1

return fib_i

Python: loop iteration with mutation

Racket: immutable tail recursion

Racket: immutable natural recursion recursive 
calls

loop 
iterations

What must we inspect to

Fold: iterator over recursive structures

(fold_ combine init list)

accumulates result by iteratively applying 
(combine element accumulator)

to each element of the list and accumulator so far 
(starting from init) to produce the next accumulator.

– (foldr f init (list 1 2 3))
computes (f 1 (f 2 (f 3 init)))

– (foldl f init (list 1 2 3))
computes (f 3 (f 2 (f 1 init)))

Tail Recursion 22

(a.k.a. reduce, inject, …)

HOF HOF

Folding geometry
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init

V ⋯1 V2 Vn-1 Vn

combine

init combine⋯

combine combine combine⋯
(foldr combine init L)

combinecombinecombine

L ⟼

(foldl combine init L)

result

result

Tail recursion

Natural recursion

Fold code: tail.rkt

• foldr implementation
• foldl implementation
• using foldr/foldl
• bonus mystery folding puzzle
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Super-iterators!
• Not built into the language

– Just a programming pattern
– Many languages have built-in support, often allow stopping early 

without resorting to exceptions

• Pattern separates recursive traversal from data processing
– Reuse same traversal, different folding functions
– Reuse same folding functions, different data structures
– Common vocabulary concisely communicates intent

• map, filter, fold + closures/lexical scope = superpower
– Later: argument function can use any “private” data in its 

environment.
– Iterator does not have to know or help.
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