Principles of Programming Languages

# Tail Recursion 

+tail.rkt

## Topics

Recursion is an elegant and natural match for many computations and data structures.

- Natural recursion with immutable data can be spaceinefficient compared to loop iteration with mutable data.
- Tail recursion eliminates the space inefficiency with a simple, general pattern.
- Recursion over immutable data expresses iteration more clearly than loop iteration with mutable state.
- More higher-order patterns: fold


## Naturally recursive factorial

(define (fact $n$ )
(if $\begin{gathered}=\mathrm{n} \\ 1\end{gathered}$
(* $n(f a c t(-n 1))))$

Space: O( )
How efficient is this implementation?
Time: O( )

## CS 240-style machine model



## Evaluation example

$$
\begin{aligned}
\text { (define } & (\text { fact } \mathrm{n}) \\
(\text { if } & (=\mathrm{n} 0) \\
& 1 \\
& (* \mathrm{n}(\text { fact }(-\mathrm{n} 1)))))
\end{aligned}
$$

Call stacks at each step

| (fact 3) | (fact 3) : 3* | (fact 3) : 3*_ | (fact 3) : 3* |
| :---: | :---: | :---: | :---: |
|  | (fact 2) | (fact 2) : 2 * | (fact 2 ) : 2 * |
| Remember: $n \mapsto 2$; and "rest of function" for this call. |  | (fact 1) | (fact 1) : $1 *$ |
|  |  |  | (fact 0) |


| (fact 3) : 3*_ | (fact 3) : 3* | (fact 3) : 3* | (fact 3) : 3*2 |
| :---: | :---: | :---: | :---: |
| (fact 2 ) : 2 * | (fact 2): 2* | (fact 2 ) : $2 * 1$ | Space: O( |
| (fact 1) : ** $^{\text {f }}$ | (fact 1) : $1 * 1$ |  | Time: O( |
| (fact 0) : 1 |  |  |  |

## Naturally recursive factorial



## Tail recursive factorial



## Common patterns of work

Natural recursion:
Argument


Base case

Full result


Base result

Tail recursion:
Argument
Base result


Base case
Full result

Accumulate
result
so far

## Natural recursion

Recursive case:
Compute result
in terms of argument and accumulated recursive result.
(define (fact n )


## Tail recursion

Recursive case:
Compute recursive argument in terms of argument and accumulator.

(fact-tail n 1))

## Evaluation example

Call stacks at each step


| (fact 3) : | (fact 3) : | (fact 3) : | (fact 3) : |
| :---: | :---: | :---: | :---: |
| (ft 3 1) :_ | (ft 3 1) : | (ft 3 1) : | (ft 3 1) :_ |
| (ft 2 3) : 6 |
| (ft 1 6) :- | (ft 1 6) :- | (ft 6 1) : 6 | etc. |
| (ft 0 6) | (ft 0 6) : 6 |  |  |

## Tail-call optimization

```
(define (fact n)
    (define (fact-tail n acc)
        (if (= n 0)
        acc
    (fact-tail n 1))
```

        Time: O( )
    (fact 3) (ft 31 1) (ft 2 3) (ft 1 6) (ft 0 6)

Language implementation recognizes tail calls.

- Caller frame never needed again.
- Reuse same space for every recursive tail call.
- Low-level: acts just like a loop.

Racket, ML, most "functional" languages, but not Java, C, etc.

## Tail position

## Tail call intuition:

"nothing left for caller to do after call", "callee result is immediate caller result"

Recursive definition of tail position:

- In (lambda (x1 ... xn) e), the body e is in tail position.
- If (if e1 e2 e3) is in tail position, then e2 and e3 are in tail position (but e1 is not).
- If (let ([x1 e1] ... [xn en]) e) is in tail position, then e is in tail position (but the binding expressions are not).

Note:

- If a non-lambda expression is not in tail position, then no subexpressions are.
- Critically, in a function call expression (e1 e2), subexpressions e1 and e2 are not in tail position.

A tail call is a function call in tail position.
A function is tail-recursive if it uses a recursive tail call.

## Tail recursion transformation

Common pattern for transforming naturally recursive functions to tail-recursive form. Works for functions that do commutative operations (order of steps doesn't matter).
 initial accumulator.

## Practice: use the transformation

;i Naturally recursive sum
(define (sum-natural xs)
(if (null? xs)
0
(+ (car xs) (sum-natural (cdr xs)))))
; ; Tail-recursive sum
(define (sum-tail xs)

## (order matters) <br> Transforming non-commutative steps

```
(define (reverse-natural-slow xs)
    (if (null? xs)
        null
        (append (reverse-natural-slow (cdr xs))
        (list (car xs)))))
```

(define (reverse-tail-just-kidding xs)
(define (rev xs acc)
(if (null? xs)
acc
$\operatorname{acc}(\operatorname{list}(\operatorname{car} \mathrm{xs}))$ )!))
(rev xs null))
(define (reverse-tail-slow xs)
(define (rev xs acc)
(if (null? xs)
acc
(rev (cdr xs) (append (list (car xs)) acc))))
(rev xs null))

## The transformation is not always ideal.

```
(define (reverse-tail-slow xs)
    (define (rev xs acc)
        (if (null? xs)
            acc
            (rev (cdr xs) (append (list (car xs)) acc))))
    (rev xs null))
```

(define (reverse-tail-good xs)

## Tail recursion $\neq$ accumulator pattern

```
; mutually tail recursive
(define (even n)
    (or (zero? n) (odd (- n 1))))
(define (odd n)
    (or (not (zero? n)) (even (- n 1))))
; tail recursive
(define (even2 n)
    (cond [(= 0 n) #t]
    [(= 1 n) #f]
    [#t (even2 (- n 2))]))
```

- Tail recursion and the accumulator pattern are commonly used together. They are not synonyms.
- Natural recursion may use an accumulator.
- Tail recursion does not necessarily involve an accumulator.


## Why tail recursion instead of loops with mutation?

1. Simpler language, but just as efficient.
2. Explicit dependences for easier reasoning.

- Especially with HOFs like fold!


## Identify dependences between

```
(define (fib n) Racket: immutable natural recursion
    (if (<n 2)
        n
        (+ (fib (- n 1)) (fib (- n 2)))))
```

                recursive
    (define (fib n)
Racket: immutable tail recursion
(define (fib-tail $n$ fibi fibi+1)
(if (= 0 n )
fibi
(fib-tail (- n 1) fibi+1 (+ fibi fibi+1))))
(fib n 0 1))

```
def fib(n):
                Python: loop iteration with mutation
    fib_i = 0
    fib_i_plus_1 = 1
    for i in range(n):
        fib_i_prev = fib_i
        fib_i = fib_i_plus_1
        fib_i_plus_1 = fib_i_prev + fib_i_plus_1
    return fib_i
```

                            iterations
    
## What must we inspect to

## Identify dependences between

```
(define (fib n) Racket: immutable natural recursion
    (if (< n 2)
        n
        (+ (fib (- n 1)) (fib (- n 2)))))
```

(define (fib n)
Racket: immutable tail recursion
(define (fib-tail $n$ fibi fibi+1)
(if (= 0 n )
fibi
(fib-tail (- n 1) fibi+1 (+ fibi fibi+1))))
(fib n 0 1))

```
def fib(n):
                Python: loop iteration with mutation
    fib_i = 0
    fib_i_plus_1 = 1
    for i in range(n):
        fib_i_prev = fib_i
        fib_i = fib_i_plus_1
        fib_i_plus_1 = fib_i_prev + fib_i_plus_1
    return fib_i
```

        iterations
    
## HOF HOF

## Fold: iterator over recursive structures

(a.k.a. reduce, inject, ...)
(fold_ combine init list)
accumulates result by iteratively applying
(combine element accumulator)
to each element of the list and accumulator so far (starting from init) to produce the next accumulator.

$$
\begin{aligned}
& -(f o l d r f \text { init (list } 123)) \\
& \quad \text { computes }(f 1 \text { (f } 2 \text { (f } 3 \text { init))) } \\
& -(f o l d l f \text { init (list } 123)) \\
& \quad \text { computes }(f 3(f 2 \text { (f } 1 \text { init))) }
\end{aligned}
$$

## Folding geometry

Natural recursion

## (foldr combine init L)



## (foldl combine init L)

Tail recursion

## Fold code: tail.rkt

- foldr implementation
- foldl implementation
- using foldr/foldl
- bonus mystery folding puzzle


## Super-iterators!

- Not built into the language
- Just a programming pattern
- Many languages have built-in support, often allow stopping early without resorting to exceptions
- Pattern separates recursive traversal from data processing
- Reuse same traversal, different folding functions
- Reuse same folding functions, different data structures
- Common vocabulary concisely communicates intent
- map, filter, fold + closures/lexical scope = superpower
- Later: argument function can use any "private" data in its environment.
- Iterator does not have to know or help.

