Introduction to Racket, a dialect of LISP: Expressions and Declarations

CS251 Programming Languages
Spring 2019, Lyn Turbak
Department of Computer Science
Wellesley College

These slides build on Ben Wood’s Fall ’15 slides

LISP: designed by John McCarthy, 1958 published 1960

LISP: implemented by Steve Russell, early 1960s

LISP: LISt Processing

- McCarthy, MIT artificial intelligence, 1950s-60s
 - Advice Taker: represent logic as data, not just program

- Needed a language for:
 - Symbolic computation
 - Programming with logic
 - Artificial intelligence
 - Experimental programming

- i.e., not just number crunching

- So make one!
Scheme

- Gerald Jay Sussman and Guy Lewis Steele (mid 1970s)
- Lexically-scoped dialect of LISP that arose from trying to make an “actor” language.
- Described in amazing “Lambda the Ultimate” papers (http://library.readscheme.org/page1.html)
 - Lambda the Ultimate PL blog inspired by these: http://lambda-the-ultimate.org
- Led to Structure and Interpretation of Computer Programs (SICP) and MIT 6.001 (https://mitpress.mit.edu/sicp/)

Racket

- Grandchild of LISP (variant of Scheme)
 - Some changes/improvements, quite similar
- Developed by the PLT group (https://racket-lang.org/people.html), the same folks who created DrJava.
- Why study Racket in CS251?
 - Clean slate, unfamiliar
 - Careful study of PL foundations (“PL mindset”)
 - Functional programming paradigm
 - Emphasis on functions and their composition
 - Immutable data (lists)
 - Beauty of minimalism
 - Observe design constraints/historical context

Expressions, Values, and Declarations

- Entire language: these three things

Expressions have evaluation rules:
 - How to determine the value denoted by an expression.

For each structure we add to the language:
 - What is its syntax? How is it written?
 - What is its evaluation rule? How is it evaluated to a value (expression that cannot be evaluated further)?

Values

- Values are expressions that cannot be evaluated further.

Syntax:
 - Numbers: 251, 240, 301
 - Booleans: #t, #f
 - There are more values we will meet soon (strings, symbols, lists, functions, …)

Evaluation rule:
 - Values evaluate to themselves.
Addition expression: syntax

Adds two numbers together.

Syntax: \((+ \ E1 \ E2)\)
Every parenthesis required; none may be omitted.
\(E1\) and \(E2\) stand in for any expression.
Note prefix notation.

Examples:
\((+ \ 251 \ 240) \)
\((+ \ (+ \ 251 \ 240) \ 301) \)
\((+ \ #\t \ 251) \)

Addition: dynamic type checking

Syntax: \((+ \ E1 \ E2)\)

Evaluation rule:
1. evaluate \(E1\) to a value \(V1\)
2. Evaluate \(E2\) to a value \(V2\)
3. If \(V1\) and \(V2\) are both numbers then
 return the arithmetic sum of \(V1 + V2\).
4. Otherwise, a type error occurs.

Evaluation Assertions Formalize Evaluation

The evaluation assertion notation \(E \downarrow V\) means
``\(E\) evaluates to \(V\``.

Our evaluation rules so far:
• value rule: \(V \downarrow V\) (where \(V\) is a number or boolean)
• addition rule:
 if \(E1 \downarrow V1\) and \(E2 \downarrow V2\)
 and \(V1\) and \(V2\) are both numbers
 and \(V\) is the sum of \(V1\) and \(V2\)
 then \((+ \ E1 \ E2) \downarrow V\)
Evaluation Derivation in English

An evaluation derivation is a "proof" that an expression evaluates to a value using the evaluation rules.

\((+ \ 3 \ (+ \ 5 \ 4)) \downarrow 12\) by the addition rule because:

• \(3 \downarrow 3\) by the value rule
• \((+ \ 5 \ 4) \downarrow 9\) by the addition rule because:
 - \(5 \downarrow 5\) by the value rule
 - \(4 \downarrow 4\) by the value rule
 - 5 and 4 are both numbers
 - 9 is the sum of 5 and 4
• 3 and 9 are both numbers
• 12 is the sum of 3 and 9

Errors Are Modeled by “Stuck” Derivations

How to evaluate
\((+ \ #t \ (+ \ 5 \ 4))\)?

\[#t \downarrow \#t\] [value]
\(5 \downarrow 5\) [value]
\(4 \downarrow 4\) [value]
\((+ \ 5 \ 4) \downarrow 9\)

Stuck here. Can’t apply (addition) rule because #t is not a number in (+ #t 9)

Syntactic Sugar for Addition

The addition operator + can take any number of operands.

• For now, treat \((+ \ E1 \ E2 \ ... \ En)\) as \((+ \ (+ \ E1 \ E2) \ ... \ En)\)
 E.g., treat \((+ \ 7 \ 2 \ -5 \ 8)\) as \((+ \ (+ \ 7 \ 2) \ -5 \ 8)\)
• Treat \((+ \ E)\) as \(E\) (or say if \(E \downarrow V\) then \((+ \ E) \downarrow V\))
• Treat \((+)\) as \(0\) (or say \((+) \downarrow 0\))
• This approach is known as syntactic sugar: introduce new syntactic forms that “desugar” into existing ones.
• In this case, an alternative approach would be to introduce more complex evaluation rules when + has a number of arguments different from 2.
Other Arithmetic Operators

Similar syntax and evaluation for:
- * / quotient remainder min max
except:
 - Second argument of /, quotient, remainder must be nonzero.
 - Result of / is a rational number (fraction) when both values are integers. (It is a floating point number if at least one value is a float.)
 - quotient and remainder take exactly two arguments; anything else is an error.
 - (- E) is treated as (- 0 E)
 - (/ E) is treated as (/ 1 E)
 - (min E) and (max E) treated as E
 - (*) evaluates to 1.
 - (/), (-), (min), (max) are errors (i.e., stuck)

Relation Operators

The following relational operators on numbers return booleans: < <= = >= >

For example:

\[
\begin{array}{c}
E1 \downarrow V1 \\
E2 \downarrow V2 \\
(\text{less than})
\end{array}
\]

Where \(V1 \) and \(V2 \) are numbers and
\(V \) is #t if \(V1 \) is less than \(V2 \)
or #f if \(V1 \) is not less than \(V2 \)

Conditional (if) expressions

Syntax: \((\text{if } E\text{test } E\text{then } E\text{else})\)

Evaluation rule:
1. Evaluate \(E\text{test} \) to a value \(V\text{test} \).
2. If \(V\text{test} \) is not the value #f then return the result of evaluating \(E\text{then} \) otherwise return the result of evaluating \(E\text{else} \)

Derivation-style rules for Conditionals

\[
\begin{array}{c}
E\text{test} \downarrow V\text{test} \\
E\text{then} \downarrow V\text{then} \text{[if nonfalse]} \\
(\text{if } E\text{test } E\text{then } E\text{else}) \downarrow V\text{then} \\
\end{array}
\]

Where \(V\text{test} \) is not #f

\[
\begin{array}{c}
E\text{test} \downarrow #f \\
E\text{else} \downarrow V\text{else} \text{[if false]} \\
(\text{if } E\text{test } E\text{then } E\text{else}) \downarrow V\text{else} \\
\end{array}
\]

Ethen is not evaluated!

Eelse is not evaluated!
Your turn

Use evaluation derivations to evaluate the following expressions

\[(\text{if } (< 8 2) (+ \ #f \ 5) (+ 3 4))\]
\[(\text{if } (+ 1 2) (- 3 7) (/ 9 0))\]
\[(+ (\text{if } (< 1 2) (* 3 4) (/ 5 6)) 7)\]
\[(+ (\text{if } 1 2 3) \#t)\]

Expressions vs. statements

Conditional expressions can go anywhere an expression is expected:

\[(+ 4 (* (\text{if } (< 9 (- 251 240)) 2 3) 5))\]
\[(\text{if } (\text{if } (< 1 2) (> 4 3) (> 5 6)) (+ 7 8)
\qquad (* 9 10))\]

Note: \texttt{if} is an \textit{expression}, not a \textit{statement}. Do other languages you know have conditional expressions in addition to conditional statements? (Many do! Java, JavaScript, Python, …)

Conditional expressions: careful!

Unlike earlier expressions, not all subexpressions of \texttt{if} expressions are evaluated!

\[(\text{if } (> 251 240) 251 (/ 251 0))\]
\[(\text{if } \#f (+ \#t 240) 251)\]

Design choice in conditional semantics

In the \texttt{[if nonfalse]} rule, \texttt{Vtest} is not required to be a boolean!

\[
\begin{array}{c}
Etest \downarrow Vtest \\
Ethen \downarrow Vthen \\
[\text{if nonfalse}] \\
(\text{if } Etest \ Ethen \ Eelse) \downarrow Vthen
\end{array}
\]

Where \texttt{Vtest} is not \#f

This is a design choice for the language designer. What would happen if we replace the above rule by

\[
\begin{array}{c}
Etest \downarrow \#t \\
Ethen \downarrow Vthen \\
[\text{if true}] \\
(\text{if } Etest \ Ethen \ Eelse) \downarrow Vthen
\end{array}
\]

This design choice is related to notions of “truthiness” and “falsiness” that you will explore in PS2.
Environments: Motivation

Want to be able to name values so can refer to them later by name. E.g.;

(define x (+ 1 2))
(define y (* 4 x))
(define diff (- y x))
(define test (< x diff))
(if test (+ (* x y) diff) 17)

Environments: Definition

- An environment is a sequence of bindings that associate identifiers (variable names) with values.
 - Concrete example:
 num ⟷ 17, absoluteZero ⟷ -273, true ⟷ #t
 - Abstract Example (use Id to range over identifiers = names):
 Id1 ⟷ V1, Id2 ⟷ V2, ..., Idn ⟷ Vn
 - Empty environment: ∅
- An environment serves as a context for evaluating expressions that contain identifiers.
- Second argument to evaluation, which takes both an expression and an environment.

Addition: evaluation with environment

Syntax: (+ E1 E2)

Evaluation rule:
1. evaluate E1 in the current environment to a value V1
2. Evaluate E2 in the current environment to a value V2
3. If V1 and V2 are both numbers then return the arithmetic sum of V1 + V2.
4. Otherwise, a type error occurs.

Variable references

Syntax: Id
Id: any identifier

Evaluation rule:
Look up and return the value to which Id is bound in the current environment.
- Look-up proceeds by searching from the most-recently added bindings to the least-recently added bindings (front to back in our representation)
- If Id is not bound in the current environment, evaluating it is “stuck” at an unbound variable error.

Examples:
- Suppose env is num ⟷ 17, absZero ⟷ -273, true ⟷ #t, num ⟷ 5
- In env, num evaluates to 17 (more recent than 5), absZero evaluates to -273, and true evaluates to #t. Any other name is stuck.
Define Declarations

Syntax: (define Id E)
- `define`: keyword
- `Id`: any identifier
- `E`: any expression

This is a declaration, not an expression! We will say a declarations are processed, not evaluated.

Processing rule:
1. Evaluate `E` to a value `V` in the current environment
2. Produce a new environment that is identical to the current environment, with the additional binding `Id → V` at the front. Use this new environment as the current environment going forward.

Environments: Example

- `env0 = ∅` (can write as . in text)
- `(define x (+ 1 2))`
 `env1 = x → 3, ∅` (abbreviated `x → 3` can write as `x → 3` in text)
- `(define y (* 4 x))`
 `env2 = y → 12, x → 3` (most recent binding first)
- `(define diff (- y x))`
 `env3 = diff → 9, y → 12, x → 3`
- `(define test (< x diff))`
 `env4 = test → #t, diff → 9, y → 12, x → 3`
- `(define x (* x y))`
 `env5 = x → 36, test → #t, diff → 9, y → 12, x → 3`

Note that binding `x → 36` "shadows" `x → 3`, making it inaccessible.

Evaluation Assertions & Rules with Environments

The evaluation assertion notation `E # env ↓ V` means "Evaluating expression E in environment env yields value V".

- `Id # env ↓ V` [varref]
 Where `Id` is an identifier and `Id → V` is the first binding in env for `Id`. Only this rule actually uses env; others just pass it along.

- `V # env ↓ V` [value]
 where `V` is a value (number, boolean, etc.)

- `E1 # env ↓ V1`
 `E2 # env ↓ V2` [addition]
 `(+ E1 E2) # env ↓ V`

Where `V1` and `V2` are numbers and `V` is the sum of `V1` and `V2`. Rules for other arithmetic and relational ops are similar.

- `E1 # env ↓ V1`
 `E2 # env ↓ V2` [if nonfalse]
 `(if E1 E2 E3) # env ↓ V2`

Where `V1` is not `#f`

Example Derivation with Environments

Suppose `env4 = test → #t, diff → 9, y → 12, x → 3`

- `test # env4 ↓ #t` [varref]
 `x # env4 ↓ 3` [varref]
 `5 # env4 ↓ 5` [value]
 `(* 5) # env4 ↓ 15` [multiplication]
 `diff # env4 ↓ 9` [varref]
 `(+ (* 5) diff) # env4 ↓ 24` [addition]
 `(if test (+ (* 5) diff) 17) # env4 ↓ 24` [if nonfalse]
Conclusion-below-subderivations, in text

Suppose env4 = test -> #t, diff -> 9, y -> 12, x -> 3

| test # env4 ↓ #t [varref]
| | | x # env4 ↓ 3 [varref]
| | | 5 # env4 ↓ 5 [value]
| | ------------------------ [multiplication]
| | (* x 5) # env4 ↓ 15
| | diff # env4 ↓ 9 [varref]
| | ------------------------ [addition]
| | (+ (* x 5) diff) # env4 ↓ 24

Suppose env4 = test -> #t, diff -> 9, y -> 12, x -> 3

(if test (+ (* x 5) diff) 17) # env4 ↓ 24 [if nonfalse]

- test # env4 ↓ #t [varref]
- (+ (* x 5) diff) # env4 ↓ 24 [addition]
 - x # env4 ↓ 3 [varref]
 - 5 # env4 ↓ 5 [value]
- diff # env4 ↓ 9 [multiplication]
Racket Identifiers

- Racket identifiers are case sensitive. The following are four different identifiers: ABC, Abc, aBc, abc

- Unlike most languages, Racket is very liberal with its definition of legal identifiers. Pretty much any character sequence is allowed as identifier with the following exceptions:
 - Can't contain whitespace
 - Can't contain special characters {}[]{}``;#|\n - Can't have same syntax as a number

- This means variable names can use (and even begin with) digits and characters like !@$%^&*.-+_:<>?/
 - myLongName, my_long___name, my-long-name
 - is_a+b, my_long__name
 - 76Trombones

- Why are other languages less liberal with legal identifiers?

Small-step vs. big-step semantics

The evaluation derivations we've seen so far are called a big-step semantics because the derivation \(e \# \text{env} \downarrow v \) explains the evaluation of \(e \) to \(v \) as one “big step” justified by the evaluation of its subexpressions.

An alternative way to express evaluation is a small-step semantics in which an expression is simplified to a value in a sequence of steps that simplifies subexpressions. You do this all the time when simplifying math expressions, and we can do it in Racket, too. E.g:

\[
(- (* (+ 2 3) 9) (/ 18 6)) \\
\Rightarrow (- (* 5 9) (/ 18 6)) \\
\Rightarrow (- 45 (/ 18)) \\
\Rightarrow (- 45 3) \\
\Rightarrow 42
\]

Small-step semantics: intuition

Scan left to right to find the first redex (nonvalue subexpression that can be reduced to a value) and reduce it:

\[
(- (* (+ 2 3) 9) (/ 18 6)) \\
\Rightarrow (- (* 5 9) (/ 18 6)) \text{[addition]} \\
\Rightarrow (- 45 (/ 18)) \text{[multiplication]} \\
\Rightarrow (- 45 3) \text{[division]} \\
\Rightarrow 42 \text{[subtraction]}
\]

Small-step semantics: reduction rules

There are a small number of reduction rules for Racket. These specify the redexes of the language and how to reduce them.

The rules often require certain subparts of a redex to be (particular kinds of) values in order to be applicable.

\[
\text{Id} \Rightarrow V, \text{ where Id} \rightarrow V \text{ is the first binding for Id in the current environment}^* \text{ [varref]} \\
(+ V1 V2) \Rightarrow V, \text{ where } V \text{ is the sum of numbers } V1 \text{ and } V2 \text{ [addition]} \\
\text{There are similar rules for other arithmetic/relational operators} \\
\text{(if Vtest Then Else) } \Rightarrow \text{Then, if Vtest is not #f [if nonfalse]} \\
\text{(if #f Then Else) } \Rightarrow \text{Else [if false]}
\]

* In a more formal approach, the notation would make the environment explicit. E.g., \(E \# \text{env} \Rightarrow V \)
Small-step semantics: conditional example

\[(+ \text{(if } \{(< 1 \ 2) \} \ (* \ 3 \ 4) \ (/ \ 5 \ 6)\} \ 7) \]
⇒ \[(+ \{\text{if #t } (* \ 3 \ 4) (/ \ 5 \ 6)\} \ 7) \ [\text{less than}] \]
⇒ \[(+ \{(* \ 3 \ 4) \} \ 7) \ [\text{if nonfalse}] \]
⇒ \[\{(+ \ 12 \ 7)\} \ [\text{multiplication}] \]
⇒ \[19 \ [\text{addition}] \]

Notes for writing derivations in text:
- You can use \Rightarrow for ⇒
- Use curly braces (...) to mark the redex
- Use square brackets to name the rule used to reduce the redex

from the previous line to the current line.

Small-step semantics: your turn

Use small-step semantics to evaluate the following expressions:

(i) \[(\text{if } (< 8 \ 2) \ (+ \ #\text{f} \ 5) \ (+ \ 3 \ 4)) \]
(ii) \[(\text{if } (+ \ 1 \ 2) \ (- \ 3 \ 7) \ (/ \ 9 \ 0)) \]
(iii) \[(+ \ (\text{if } (< 1 \ 2) \ (* \ 3 \ 4) \ (/ \ 5 \ 6)) \ 7) \]
(iv) \[(+ \ (\text{if } 1 \ 2 \ 3) \ #\text{t}) \]

Small-step semantics: errors as stuck expressions

Similar to big-step semantics, we model errors (dynamic type errors, divide by zero, etc.) in small-step semantics as expressions in which the evaluation process is stuck because no reduction rule is matched. For example:

\[(- \ (* \ (+ \ 2 \ 3) \ #\text{t}) \ (/ \ 18 \ 6)) \]
⇒ \[(- \ (* \ 5 \ #\text{t}) \ (/ \ 18 \ 6)) \text{ Stuck!} \]
⇒ \[(\text{if } (= \ 2 \ (/ \ (+ \ 3 \ 4) \ (- \ 5 \ 5))) \ 8 \ 9) \]
⇒ \[(\text{if } (= \ 2 \ (/ \ 7 \ (- \ 5 \ 5))) \ 8 \ 9) \]
⇒ \[(\text{if } (= \ 2 \ (/ \ 7 \ 0)) \ 8 \ 9) \text{ Stuck!} \]

Racket Documentation

Racket Guide:
https://docs.racket-lang.org/guide/

Racket Reference:
https://docs.racket-lang.org/reference