
Big Ideas for CS 251  
Theory of Programming Languages 

Principles of Programming Languages

CS251	Programming	Languages	

Spring	2019,	Lyn	Turbak	

	

Department	of	Computer	Science	

Wellesley	College	

Programming Languages

•  What is a PL?

•  Why are new PLs created?

–  What are they used for?

–  Why are there so many?

•  Why are certain PLs popular?

•  What goes into the design of a PL?

–  What features must/should it contain?

–  What are the design dimensions?

–  What are design decisions that must be made?

•  Why should you take this course? What will you learn?

Big ideas 2

PL	is	my	passion!	

•  First PL project in 1982 as intern  
at Xerox PARC

•  Created visual PL for 1986 MIT  
masters thesis

•  1994 MIT PhD on PL feature  
(synchronized lazy aggregates)

•  1996 – 2006: worked on types  
as member of Church project

•  1988 – 2008: Design Concepts in Programming Languages

•  2011 – current: lead TinkerBlocks research team at Wellesley

•  2012 – current: member of App Inventor development team

Big ideas 3

General	Purpose	PLs	

Python
Fortran

C/C++

Java

Racket	
ML

Haskell

CommonLisp

Perl

Ruby

JavaScript

Big ideas 4

Scala
C#

Domain	Specific	PLs	(DSLs)	

IDL

CSS

PostScript�

HTML	

OpenGL LaTeX

Excel

Matlab
R

Swift

Big ideas 5

Digital Amati
JINJA

Programming	Languages:	Mechanical	View		

A	computer	is	a	machine.	Our	aim	is	to	make	

the	machine	perform	some	specified	acGons.		

With	some	machines	we	might	express	our	

intenGons	by	depressing	keys,	pushing	

buKons,	rotaGng	knobs,	etc.		For	a	computer,	

we	construct	a	sequence	of	instrucGons	(this	

is	a	``program'')	and	present	this	sequence	to	

the	machine.			

						–	Laurence	Atkinson,	Pascal	Programming	

 Big ideas 6

Programming	Languages:	LinguisGc	View		

A	computer	language	…	is	a	novel	formal	

medium	for	expressing	ideas	about	

methodology,	not	just	a	way	to	get	a	computer	

to	perform	operaGons.		Programs	are	wriKen	for	

people	to	read,	and	only	incidentally	for	

machines	to	execute.						

															–	Harold	Abelson	and	Gerald	J.	Sussman	

Big ideas 7

�Religious�	Views	
The	use	of	COBOL	cripples	the	mind;	its	teaching	should,	therefore,	be	

regarded	as	a	criminal	offense.	–	Edsger	Dijkstra	

It	is	pracGcally	impossible	to	teach	good	programming	to	students	that	

have	had	a	prior	exposure	to	BASIC:	as	potenGal	programmers	they	are	

mentally	muGlated	beyond	hope	of	regeneraGon.		–	Edsger	Dijstra	

You're	introducing	your	students	to	programming	in	C?			You	might	as	well	

give	them	a	frontal	lobotomy!		–	A	colleague	of	mine	

A	LISP	programmer	knows	the	value	of	everything,	but	the	cost	of	nothing.																																																																					

-		Alan	Perlis		

I	have	never	met	a	student	who	cut	their	teeth	in	any	of	these	languages	

and	did	not	come	away	profoundly	damaged	and	unable	to	cope.	…	I	mean	

this	reads	to	me	very	similarly	to	teaching	someone	to	be	a	carpenter	by	

starGng	them	off	with	plasGc	toy	tools	and	telling	them	to	go	sculpt	sand	on	

the	beach.	-		John	Haugeland,	on	blocks	languages	

A	language	that	doesn't	affect	the	way	you	think	about	programming,	is	not	

worth	knowing.			-		Alan	Perlis		

 Big ideas 8

CS111 Big idea #1: Abstraction

Function & �
Data Abstraction�

Implementer
Function & �

Data Abstraction�
User / Client

Contract / API

Big ideas 9

Which	Programming/PL	Hat	do	You	Wear?	

Programming Language
Designer

Programming	Paradigms	

•  Impera've	(e.g.	C,	Python):	ComputaGon	is	step-by-step	execuGon	on	a	

stateful	abstract	machine	involving	memory	slots	and	mutable	data	

structures.		

•  Func'onal,	func'on-oriented	(e.g	Racket,	ML,	Haskell):	ComputaGon	is	

expressed	by	composing	funcGons	that	manipulate	immutable	data.	

•  Object-oriented	(e.g.	Simula,	Smalltalk,	Java):	ComputaGon	is	expressed	in	

terms	of	stateful	objects	that	communicate	by	passing	messages	to	one	

another.		

•  Logic-oriented	(e.g.	Prolog):	ComputaGon	is	expressed	in	terms	of	declaraGve	

relaGonships.		

Note:	In	pracGce,	most	PLs	involve	mulGple	paradigms.	E.g.		

•  Python	supports	funcGonal	features	(map,	filter,	list	comprehensions)	and	

objects		

•  Racket	and	ML	have	imperaGve	features.		

Big ideas 10

quicksort :: Ord a => [a] -> [a]
quicksort [] = []
quicksort (p:xs) =
 (quicksort lesser)  
 ++ [p]
 ++ (quicksort greater)
 where
 lesser = filter (< p) xs
 greater = filter (>= p) xs

Paradigm	Example:	Quicksort	

void qsort(int a[], int lo, int hi) {

 int h, l, p, t;

 if (lo < hi) {

 l = lo;

 h = hi;

 p = a[hi];

 do {

 while ((l < h) && (a[l] <= p))

 l = l+1;

 while ((h > l) && (a[h] >= p))

 h = h-1;

 if (l < h) {

 t = a[l];

 a[l] = a[h];

 a[h] = t;

 }

 } while (l < h);

 a[hi] = a[l];

 a[l] = p;

 qsort(a, lo, l-1);

 qsort(a, l+1, hi);

 }

}

ImperaGve	Style	

	(in	C;	Java	would	be	similar)	

FuncGonal	Style	(in	Haskell)	

Big ideas 11

PLs		differ	based	on	decisions	language	designers	make	in	many	dimensions.	E.g.:	

•  First-class	values:	what	values	can	be	named,	passed	as	arguments	to	

funcGons,	returned	as	values	from	funcGons,	stored	in	data	structures.		

Which	of	these	are	first-class	in	your	favorite	PL:	arrays,	funcGons,	variables?		

•  Naming:	Do	variables/parameters	name	expressions,	the	values	resulGng	

from	evaluaGng	expressions,	or	mutable	slots	holding	the	values	from	

evaluaGng	expressions?		How	are	names	declared	and	referenced?	What	

determines	their	scope?		

•  State:	What	is	mutable	and	immutable;	i.e.,	what	enGGes	in	the	language	

(variables,	data	structures,	objects)	can	change	over	Gme.		

•  Control:	What	constructs	are	there	for	control	flow	in	the	language,	e.g.	

condiGonals,	loops,	non-local	exits,	excepGon	handling,	conGnuaGons?		

•  Data:	What	kinds	of	data	structures	are	supported	in	the	language,	including	

products	(arrays,	tuples,	records,	dicGonaries),	sums	(opGons,	oneofs,	

variants),	sum-of-products,	and	objects.		

•  Types:		Are	programs	staGcally	or	dynamically	typed?	What	types	are	

expressible?	

PL Dimensions

Big ideas 12

Why	study	PL?	
•  Crossroads	of	CS	

•  Approach	problems	as	a	language	designer.	

–  "A	good	programming	language	is	a	conceptual	universe	for	thinking	about	

programming”		--	Alan	Perlis	

–  Evaluate,	compare,	and	choose	languages	

–  Become	beKer	at	learning	new	languages	

–  Become	a	beKer	programmer	by	leveraging	powerful	features	

(first-class	funcGons,	tree	recursion,	sum-of-product	datatypes,	paKern	

matching)	

–  You	probably	won’t	design	a	general-purpose	PL,	but	might	design	a	DSL	

–  view	API	design	as	language	design	
•  Ask:	

–  Why	are	PLs	are	the	way	they	are?	

–  How	could	they	(or	couldn't	they)	be	beKer?	

–  What	is	the	cost-convenience	trade-off	for	feature	X?	

Big ideas 13

Administrivia	

•  Schedule, psets, quizzes, lateness policy, etc.: 
see http://cs.wellesley.edu/~cs251/.

•  Do (most of) PS0 tonight

–  Fill out “get to know you” Introze introduction.

–  Review course syllabus and policies  

(we’ll go over these tomorrow)

–  Read Wed slides on “big-step semantics” of Racket

–  Install Dr. Racket

•  PS1 is available; due next Friday. Start it this week!

•  Credit/non is a bad idea for 251. Talk to me first!

•  Visit me in office hours before next Friday!

Big ideas 14

PL Parts

Syntax: form of a PL

•  What a P in a given L look like as symbols?

•  Concrete syntax vs abstract syntax trees (ASTs)

Semantics: meaning of a PL

•  Dynamic Semantics: What is the behavior of P? What actions does it

perform? What values does it produce?

–  Evaluation rules: what is the result or effect of evaluating each language

fragment and how are these composed?

•  Static Semantics: What can we tell about P before running it?

–  Scope rules: to which declaration does a variable reference refer?

–  Type rules: which programs are well-typed (and therefore legal)?

Pragmatics: implementation of a PL (and PL environment)

•  How can we evaluate programs in the language on a computer?

•  How can we optimize the performance of program execution?  

 Big ideas 15

Syntax (Form) vs. Semantics (Meaning) 
in Natural Language

Furiously sleep ideas green colorless.

Colorless green ideas sleep furiously.

Little white rabbits sleep soundly.

Big ideas 16

Concrete	Syntax:	Absolute	Value	FuncGon	

Logo: to abs :n ifelse :n < 0 [output (0 - :n)] [output :n] end

Javascript: function abs (n) {if (n < 0) return -n; else return n;}

Java: public static int abs (int n) {if (n < 0) return -n; else return n;}

Python: App Inventor:

def abs(n):

 if n < 0:

 return -n

 else:

 return n

Scheme/Racket: (define abs (lambda (n) (if (< n 0) (- n) n)))

PostScript: /abs {dup 0 lt {0 swap sub} if} def

Big ideas 17

Abstract	Syntax	Tree	(AST):		

Absolute	Value	FuncGon	

varref	

return	

n	

return	

intlit	

0

relaGonalOperaGon	

varref	

n	

condiGonalStatement	

funcGonDeclaraGon	

abs	

n

test	
then	

body	
params	funcL

onNa
me	

rand1	

name	

name	

arithmeGcOperaGon	

value	

subtract	

varref	

n	

name	

value	

intlit	

0

lessThan	

value	
rand1	

This	AST	abstracts	over	the	

concrete	syntax	for	the	Logo,	

JavaScript,	and	Python	

definiGons.		The	other	definiGons	

would	have	different	ASTs.	

Big ideas 18

Dynamic	SemanGcs	Example	1	

Big ideas 19

What	is	the	meaning	of	the	following	expression?	

(1 + 11) * 10
	

Dynamic	SemanGcs	Example	2	

What	is	printed	by	the	following	program?		
	

a = 1;

b = a + 20;

print(b);

a = 300

print(b);

count = 0;

fun inc() { count = count + 1; return count; }

fun dbl(ignore, x) { return x + x; }

print(dbl(inc(), inc())

Big ideas 20

Dynamic	SemanGcs	Example	3	

Suppose	a	is	an	array	(or	list)	containing	the	three	integer	values	10,	20,	and	30	
in	the	following	languages.	What	is	the	meaning	of	the	following	expressions/

statements	in	various	languages	(the	syntax	might	differ	from	what’s	shown).	

	

		

a[1] a[3] a[2] = "foo" a[3] = 17

Java	

C	

Python	

JavaScript	

Pascal	

App	Inventor	

How	do	you	determine	the	answers???	

	

		

Big ideas 21

SemanGcs	Example	3	

Suppose	a	is	an	array	(or	list)	containing	the	three	integer	values	10,	20,	and	30	
in	the	following	languages.	What	is	the	meaning	of	the	following	expressions/

statements	in	various	languages	(the	syntax	might	differ	from	what’s	shown).	

	

		

a[1] a[3] a[2] = "foo" a[3] = 17

Java	 	

	

C	 	

	

Python	 	

	

JavaScript	 	

	

Pascal	 	

	

App	Inventor	 	

	

How	do	you	determine	the	answers?	Try	in	implementaCon;	consult	documentaCon	
Big ideas 22

StaGc	SemanGcs	Example	1:	Type	Checking	

Which	of	the	following	Java	examples	can	be	well-typed	(i.e.,	pass	the	type	

checker)?		How	do	you	know?	What	assumpGons	are	you	making?	

	

	

2 * (3 + 4)

2 < (3 + 4)

2 < True

if (a < b) {
 c = a + b;
} else {
 c = a * b;
}

if (a) {
 c = a + b;
} else {
 c = a * b;
}

if (a < b) {
 c = a + b;
} else {
 c = a > b;
}

public boolean f(int i, boolean b) {
 return b && (i > 0);
}

public int g(int i, boolean b) {
 return i * (b ? 1 : -1);
}

public int p(int w) {
 if (w > 0) { return 2*w; }
}

public int q(int x) { return x > 0; }

public int r(int y) { return g(y, y>0); }

public boolean s(int z) { return f(z); }

A

B

C

D

E

F G

H

I	

J	

K

L

Big ideas 23

Static Semantics Example 2:  
Detecting Loops

Which	of	these	Python	programs	has	

inputs	for	which	it	loops	forever?

def f(x):
 return x+1

def g(x):
 while True:
 pass
 return x

def h2(x):
 if x <= 0:
 return x
 else:
 return h2(x+1)

def h(x):
 while x > 0:
 x = x+1
 return x

def g2(x):
 return g2(x)

def collatz(x):
 while x != 1:
 if (x % 2) == 0:
 x = x/2
 else:
 x = 3*x + 1
 return 1

Big ideas 24

Static Semantics and Uncomputability

It	is	generally	impossible	to	answer	any	interesGng	quesGon	about	

staGc	program	analysis!	

	

This	is	a	consequence	of	Rice’s	Theorem	(see	CS235).		

	

For example, will this program ever:

•  halt on certain inputs

•  encounter an array index out of bounds error?

•  throw a NullPointerException?

•  access a given object again?

•  send sensitive information over the network?

•  divide by 0?

•  run out of memory, starting with a given amount available?

•  try to treat an integer as an array?

	

	

 Big ideas 25

•  Church-Turing	Thesis:	Computability	is	the	common	spirit	embodied	by	

this	collecGon	of	formalisms.	

•  This	thesis	is	a	claim	that	is	widely	believed	about	the	intuiGve	noGons	of	

algorithm	and	effecGve	computaGon.		It	is	not	a	theorem	that	can	be	

proved.		

•  Because	of	their	similarity	to	later	computer	hardware,	Turing	machines	

(CS235)	have	become	the	gold	standard	for	effecGvely	computable.		

•  We�ll	see	in	CS251	that	Church’s	lambda-calculus	formalism	is	the	

foundaGon	of	modern	programming	languages.		

•  A	consequence:	programming	languages	all	have	the	�same�	
computaGonal	�power�	in	term	of	what	they	can	express.	All	such	

languages	are	said	to	be	Turing-complete.		

The	Church-Turing	Thesis	

and	Turing-Completeness	

Big ideas 26

Expressiveness	and	Power	

•  About:	
–  ease	
–  elegance	
–  clarity	
– modularity	

–  abstracGon	
–  ...	

•  Not	about:	computability	

•  Different	problems,	different	languages	

–  Facebook	or	web	browser	in	assembly	language?	

Big ideas 27

Pragmatics: Raffle App In App Inventor

Designer	Window	 Blocks	Editor	

To	enter	the	raffle,	text	me	now	with			

an	empty	message:	339-225-0287	

hKp://ai2.appinventor.mit.edu	

How	hard	is	this	to	do	in	more	tradiGonal	

development	environments	for	Android/

iOS?	

Big ideas 28

Pragmatics: Metaprogramming

PLs	are	implemented	in	terms	of	metaprogams	=	programs	that	

manipulate	other	programs.		

This	may	sound	weird,	but	programs	are	just	trees	(ASTs),	so	a	

metaprogram	is	just	a	program	that	manipulates	trees	(think	a	

more	complex	version	of	CS230	binary	tree	programs).		

ImplementaGon	strategies:		

•  Interpreta'on:	interpret	a	program	P	in	a	source	language	S	in	terms	of	an	

implementaGon	language	I.		

•  Transla'on	(compila'on):	translate	a	program	P	in	a	source	language	S	to	a	

program	P’	in	a	target	language	T	using	a	translator	wriKen	in	

implementaGon	language	I.		

•  Embedding:	express	program	P	in	source	language	S	in	terms	of	data	

structures	and	funcGons	in	implementaGon	language	I.		

	

Big ideas 29

Metaprogramming:	InterpretaGon	

Interpreter		

for	language	L		

on	machine	M	

Machine	M	
Program	in	

language	L		

Big ideas 30

Metaprogramming:	TranslaGon	

Interpreter		

for	language	B		

on	machine	M	

Machine	M	

Program	in	

language	A		 A	to	B	translator		

	

Program	in	

language	B	

Big ideas 31

Metaprogramming:	Bootstrapping	Puzzles	

How	can	a	Java	compiler	be	wriKen	in	Java?		

How	can	a	Racket	interpreter	be	wriKen	in	Racket?		

How	can	gcc	(a	C-to-x86	compiler)	be	wriKen	in	C?		

Big ideas 32

Metaprogramming:	Programming	Language	Layers	

kernel	

syntacGc	sugar	

primiGve		

values/datatypes	

system	libraries	

user	libraries	

Big ideas 33

Metaprogramming:	Embedding	

Interpreter		

for	language	B		

on	machine	M	

Machine	M	
Program	in	

language	A	

embedded	in	

language	B		

Big ideas 34

Programming	Language	EssenGals	

PrimiGves	

Means	of	CombinaGon	

Means	of	AbstracGon	

Think	of	the	languages	you	know.	What	means	of	abstracGon	do	they	have?		

Big ideas 35

Why?	Who?	When?	Where?	

Design	and	ApplicaGon	

•  Historical context

•  Motivating applications

–  Lisp: symbolic computation, logic, AI, experimental programming

–  ML: theorem-proving, case analysis, type system

–  C: Unix operating system

–  Simula: simulation of physical phenomena, operations, objects

–  Smalltalk: communicating objects, user-programmer,

pervasiveness

•  Design goals, implementation constraints

–  performance, productivity, reliability, modularity, abstraction,
extensibility, strong guarantees, …

•  Well-suited to what sorts of problems?

Big ideas 36

