Higher-Order List Functions
in Racket

SOLUTIONS

CS251 Programming
Languages
Spring 2019, Lyn Turbak

Department of Computer Science
Wellesley College

Higher-order List Functions

A function is higher-order if it takes another
function as an input and/or returns another
function as a result. E.g. app-3-5,
make-linear-function, f1ip2 from the
previous lecture

We will now study higher-order list functions
that capture the recursive list processing
patterns we have seen.

Higher-order List Funs 2

Recall the List Mapping Pattern

(mapF (list v1 v2 .. vn))

F F F
(Fvi) (Fv2) (Fvn)

(define (mapF xs)
(1f (null? xs)
null
(cons (F (first xs))

(mapF (rest xs)))))

Higher-order List Funs 3

vl v2 coe vn @

Express Mapping via Higher-order my-map

Rather than defining a /st recursion pattern for mapping,
let’s instead capture this pattern as a higher-order list function
my-map:

(define (my-map £ xs)
(if (null? xs)
null
(cons (£ (first xs))

(my-map £ (rest xs)))))

This way, we write the mapping list recursion function
exactly once, and use it as many times as we want!

Higher-order List Funs 4

it's

my-map Examples Solutions o

> (my-map (A (x) (* 2 x)) "(7 2 4))

'(14 4 8)

> (my-map first '"((2 3) (4) (5 6 7)))

'(2 4 5)

> (my-map (make-linear-function 4 7) '"(0 1 2 3))

'(7 11 15 19)
> (my-map app-3-5 (list sub2 + avg pow (flip2 pow)

make-linear-function))
'(-2 8 4 243 125 {#i<procedure:...t-class-funs.rkt:17:4>)

Printed representation of

procedure in Racket

Higher-order List Funs 5

map-scale Solutions your
\Yturn
Define (map-scale n nums),which returns a list that

results from scaling each number in nums by n.

> (map-scale 3 '"(7 2 4))
'(21 6 12)

> (map-scale 6 (range 0 5))
'(0 6 12 18 24)

(define (map-scale n nums)
(my-map (A (num) (* n num))
nums))

Higher-order List Funs 6

Currying Solutions yoin

A curried binary function takes one argument at a time.

(define (curry2 binop)
(A (x) (A (y) (binop x y)))

(define curried-mul (curry2 *))

> ((curried-mul 5) 4)

20

> (my-map (curried-mul 3) '(1 2 3))

'(3 6 9)

> (my-map ((curry2 pow) 4) '(1 2 3)) ‘
'(4 16 64) Haskell Curry
> (my-map ((curry2 (flip2 pow)) 4) '(1 2 3))

'(1 16 64)

> (define LOL ' ((2 3) (4) (5 6 7)))

> (my-map ((curry2 cons) 8) LOL)
'((8 2 3) (8 4) (856 7))

> (my-map ((curry2 snoc) 8) LOL) ; fill in the blank
]

((238) (48 (5678)) Higher-order List Funs 7

Mapping with binary functions

(define (my-map2 binop xs ys)

(if (or (null? xs) (null? ys)) ; design decision:
; result has length of
; shorter list
null
(cons (binop (first xs) (first ys))

(my-map2 binop (rest xs) (rest ys))))))

> (my-map2 pow '(2 3 5) '(6 4 2))
'(64 81 25)

> (my-map2 cons '(2 3 5) '(6 4 2))
'((2 . 6) (3 . 4) (5. 2))

> (my-map2 + '(2 3 4 5) '(6 4 2))
(2 . 6) (3 .4) (5. 2))

Higher-order List Funs 8

Built-in Racket map Function
Maps over Any Number of Lists

> (map (A (x) (* x 2)) (range 1 5))
'(2 4 6 8)

> (map pow '(2 3 5) '(6 4 2))

'(64 81 25)
> (map (A (a b x) (+ (* a x) b)) Racket makes different
"(2 35) '"(642) "(012)) design decision than my-
, map2: generate error when
(6.7 12) lists have different length

> (map pow '(2 3 4 5) '(6 4 2))

ERROR: map: all lists must have same size;
arguments were: #<procedure:pow> '(2 3 4 5) '(6 4 2)

Higher-order List Funs 9

Recall the List Filtering Pattern

(filterP (list vl1 v2 .. vn))

vl v2 see vn —>Q
/ /1 /
f/h) f'/h‘{ f'/j)
\\IE/’ “\l/ “\l/
#t # X #t
v v
vl see ——>vn| ——>@

(define (filterP xs)
(if (null? xs)
null
(1f (P (first xs))
(cons (first xs) (filterP (rest xs)))
(filterP (rest xs)))))

Higher-order List Funs 10

Express Filtering via Higher-ordermy-filter

Similar to my-map, let’s capture the filtering list recursion
pattern via higher-order list function my-£ilter:

(define (my-filter pred xs)
(1f (null? xs)
null
(if (pred (first xs))
(cons (first xs)
(my-filter pred (rest xs)))
(my-filter pred (rest xs)))))

The built-in Racket £ilter function acts just like my-filter

Higher-order List Funs 11

it's

filter Examples Solutions yom

> (filter (A (x) (> x 0)) '(7 -2 -4 8 5))
'(7 8 5)
> (filter (A (n) (= 0 (remainder n 2)))

'(7 -2 -4 8 5))
'(-2 -4 8)

> (filter (A (xs) (>= (len xs) 2))
'((2 3) (4) (56 7))
'((2 3) (5617))

> (filter number? '(17 #t 3.141 "a"™ (1 2) 3/4 5+61))
'(17 3.141 3/4 5+6i)

> (filter (lambda (binop) (>= (app-3-5 binop)
(app-3-5 (flip2 binop))))
(list sub2 + * avg pow (flip2 pow)))
; The printed rep would show 4 #<procedure>s,
; but the returned list would be equivalent to
; (list + * avg pow)
Higher-order List Funs 12

Recall the Recursive List Accumulation Pattern

(recf (list vl v2 .. vn))

vl v2 X X) vn N EEYY

L 1

<—combine)¢«—combine)¢— ¢** <«—(combine)<— nullval

(define (rec-accum xS)
(1f (null? xs)
nullval

(combine (first xs)
(rec-accum (rest xs)))))

Higher-order List Funs 13

Express Divide/Conque/Gluelist Recursion
via Higher-order my-foldr

vl v2 [X X vn | >@

[|

<—combine)«—combine)¢— ¢** <—(combine)¢<— nullval

(define (my-foldr combine nullval vals)
(if (null? wvals)
nullval
(combine (first vals)
(my-foldr combine

nullval

(rest vals)))))

This way, we never need to write another DCG list recursion!

Instead, we instead just call my-foldr with the right arguments.
Higher-order List Funs 14

it's

my-foldr Examples Solutions gou

my-foldr + 0 '(724))=%13 ; (+7 (2 (+40))) M/

>)

> (my-foldr * 1 '"(7 2 4))=*56 ; (* 7 (* 2 (* 4 1)))

> (my-foldr — 0 '(7 2 4))=%9 ; (-7 (-2 (-4 0)))

> (my-foldr min +inf.0 '(7 2 4))

=% 2 ; (min 7 (min 2 (min 4 +inf.0)))

> (my-foldr max -inf.0 '(7 2 4))

=% 7 ; (max 7 (max 2 (max 4 -inf.0)))

> (my-foldr cons '(8) '(7 2 4)

=*1'(7 2 4 8) ; (cons 7 (cons 2 (cons 4 '(8))))

> (my-foldr append null '((2 3) (4) (5 6 7))) =*"'(2 3 456 7)

(append '(2 3) (append '(4) (append '(5 6 7) '())))

> (define (my-length L)
(my-foldr (A (fst sublen) (+ 1 sublen)) 0
L)) ; fill in the blank

> (define (filter-positive nums)
(my-foldr (A (num subPoss)
(if (> num 0) (cons num subPoss) subPoss))
'()

nums)) ; fill in the blank Higher-order List Funs 15

it's

More my—-foldr Examples Solutions gom
N
> (my-foldr (A (fst subBool) (and fst subBool)) #t

(list #t #t #t))

#t ; (and #t (and #t (and #t #t)))

> (my-foldr (A (fst subBool) (and fst subBool)) #t
(list #t #f #t))
#£ ; (and #t (and #£f (and #t #t)))

> (my-foldr (A (fst subBool) (or fst subBool)) #£f
(list #t #f #t))
#t ; (or #t (or #f (or #t #t)))=

> (my-foldr (A (fst subBool) (or fst subBool)) #f
(list #f #£f #£f))
#£ ; (or #f (or #f (or #f #f)))

;7 This doesn’t work. Why not?

> (my-foldr and #t (list #t #t #t))

Because and is a syntactic sugar keyword, not a first-class function
Higher-order List Funs 16

it's

)
Your turn: sumProdList Solutions Fan

Define sumProdList (from scope lecture) in terms of foldr.
Is 1et necessary here like it was in scoping lecture?

' (sumProdList '(5 2 4 3)) -> '(14 . 120)

(define (sumProdList nums)
(foldr (A (num subPair) ; combiner
(cons (+ num (car subPair))
(* num (cdr subPair)))
'(0 . 1) ; nullval

nums))
; (1) Good idea to begin combiner (A (num subPair) ..)
; or A with two other descriptive param names

; (2) Use “pretty printing” indentation to align
3 args to foldr and 2 args to cons
Higher-order List Funs 17

Mapping & Filtering in terms of my-foldr ggm
Solutions \um/

(define (my-map f xs)
(my-foldr (A (x subMap) ; combiner
(cons (f x) subMap))
'(); nullval

Xs))

(define (my-filter pred xs)
(my-foldr (A (x subFilter) ; combiner
(if (pred x)
(cons x subFilter)

subFilter))
'"() ; nullval
xs))

Higher-order List Funs 18

Built-in Racket foldr Function
Folds over Any Number of Lists

> (foldr + 0 '(7 2 4))

13
> (foldr (lambda (a b sum) (+ (* a b) sum))
0
'(2 3 4)
"(5 6 7))
56
> (foldr (lambda (a b sum) (+ (* a b) sum))
° Same design decision
(1234 as in map
"(5 6 7))

ERROR: foldr: given list does not have the same size
as the first list: '"(5 6 7)

Higher-order List Funs 19

Problematic for foldr Solutions

(keepBiggerThanNext nums) returns a new list that keeps all nums that
are bigger than the following num. It never keeps the last num.

> (keepBiggerThanNext '(7 1 3 9 5 4))
'(7 9 5)

> (keepBiggerThanNext '(2 7 1 3 9 5 4))
'(7 9 5)

> (keepBiggerThanNext '(6 2 7 1 3 9 5 4))
'(6 7 9 5)

keepBiggerThanNext cannot be defined by fleshing out the following
template. Why not?

(foldr <combiner> <nullvalue> nums))

Because combiner can only use first of current list and result of recursively
processing rest of list, but does not have access to rest of list itself, so cannot

determine whether or not to keep first element. Higher-order List Funs 20

keepBiggerThanNext with foldr

keepBiggerThanNext needs (1) next number and (2) list result from below.
With foldr, we can provide both #1 and #2, and then return #2 at end

(7 (7 95)) " '(1 (95)) '(3 (9 5)) (9 (95)) (5 (5)) '(4 ()) '(+inf.0 ())

(define (keepBiggerThanNext nums)
(second
(foldr (A (thisNum nextNum&subResult)
(let {[nextNum (first nextNum&subResult)]

[subResult (second nextNum&subResult)]}

(list thisNum ; becomes nextNum for elt to left
(1f (> thisNum nextNum)
(cons thisNum subResult) ; keep

subResult)))) ; don’t keep

(list +inf.0 '()) ; +inf.0 guarantees last num

; in nums won't be kept

nums)))
Higher-order List Funs 21

foldr-ternop: more info for combiner

In cases like keepBiggerThanNext, it helps for the combiner
to also take rest of list as an extra arg

(foldr-ternop ternop nullval (list vl v2 .. vn))

vl v2 X X) vn |
arg #1 | arg #2 l

@ eoe <—<—-— nullval
arg #3

(define (foldr-ternop ternop nullval vals)
(if (null? wvals)

nullval

<—(ternop

(ternop (first vals) ; arg #1
(rest vals) ; extra arg # 2 to ternop
; arg #3
(foldr-ternop ternop nullval (rest vals))))

Higher-order List Funs 22

keepBiggerThanNext with foldr-ternop i

| you
Solutions \urn/

(define (keepBiggerThanNext nums)
(foldr-ternop
(A (thisNum restNums subResult) ; combiner

(if (null? restNums)
special case for singleton list; *must*
; test restNums, not subResult, for null? Why?

")
(if (> thisNum (first restNums))
(cons thisNum subResult)
subResult)))
"() ; nullval

nums))

’

> (keepBiggerThanNext '(6 2 7 1 3 9 5 4))
'(6 7 9 5)

Higher-order List Funs 23

