Wellesley College a CS301 Compiler Design a Fall 2000
Handout #03

THE KITTY REFERENCE MANUAL

1. Overview

Kitty is asimple subset of the Tiger language described in Appendix A of Appel’s textbook.*
Like Tiger, Kitty provides various operations for manipul ating integers, simple input/output
operations, scoped mutable variables, conditionals, and loops. But Kitty does not support other
Tiger features like functions, compound data structures (arrays and records), and explicit types.

We will use Kitty as our source language in our first pass at exploring the stages of compilation.
Once we understand the stages better, we will consider extensions to Kitty that support more of
Tiger’ sfeatures.

2. Syntax
2.1 Lexical Conventions

Lexical conventions specify the structure of identifiers, literals and comments. The lexical
conventions for are similar to those for Tiger, except for the conventions for character literals
(which are not present in Tiger). For completeness, here we augment the lexical conventionsin
Section A.1 of Appel’s book with the changes and clarifications needed for Kitty.

1. Anidentifier isamaximal sequence of letters, digits, and underscores, starting with aletter.
Uppercase and lowercase letters are distinguished. An identifier must be distinct from the
reserved keywords words of the language.

2. Aninteger literal isamaximal sequence of digits. All integer literals are positive integers; the
unary minus sign before a negative literal is adistinct token.

3. A character literal isapair of single quotes delimiting a single character or escape sequence.
‘A and' a' are examples of single-character character literals. The escape sequences are as
follows:

-\ n (newline)
-\t (tab)

- \' (single quote)
- \\ (backslash)

- \ ~c, where c ranges over the 26 capital letters and the seven punctuation marks @[,] \ ,»,
_,and 2. These are so-called control characters. '\ 2" isequivaentto'\t' and'\~J' is
equivalentto' \ n' .

-\ ddd where d ranges over the decimal digits. This denotes the character whose ASCII value
is the specified three digit decimal number, which must bein the range [0 .. 255].

4. A string literal isapair of double quotes delimiting any sequence of characters or escape
sequences. The escape sequences within a string literal are the same as those for character
literals except:

*\' " isnot an escape character within astring literal.
"\"' isan escape character within astring literal (but not within a character literal).

! Actually, Kitty is not technically a subset of Tiger because it has afew features that Tiger does not have. In
particular: (1) Kitty supports character literals that are distinct from strings; (2) Kitty has constants true, false, minint
and maxint that are not defined in Tiger; and (3) Kitty provides several operators not provided by Tiger: readc,
readi, writec, writel, writes. Nevertheless, in all other respects but these, Kitty is a subset of Tiger.

1

Unlike Tiger, Kitty allows string literals that extend over multiple lines without requiring the
use of backslashes at the beginning and end of every line. (Compare to Section A.3, p. 517 of
Appel’ s book.)

5. Whitespace (i.e., space, tabs, and newlines) appearing between any two tokens is ignored.
Whitespace is optional aslong as there is no ambiguity in token structure without it.

6. A comment may appear between any two tokens. Comments start with /* and end with */
and may be nested.

2.2. Grammar

Syntactically well-formed Kitty programs are those derivable from the grammar in Figures 1.
Bold names stand for token types. Italicized annotations are comments and not part of the
grammar.

The grammar in Figure 1 is ambiguous. The ambiguities are removed by the following rules:

Precedence: The precedence of operators from highest to lowest is as follows (operators on
the same line have the same precedence):

unary minus (negation)
* /

+, -

<=, =, <>, >=, >

— > A

Associativity: The operators*, \, +, -, & and| areall left-associative. E.g., 1 -2+ 3is
parsed asif it were written (1 —2) + 3. Therelational <, <=, =, <>, >=, and> are all non-
associative. E.g., 1 <2 =3 isnot alegal expression, even though the explicitly grouped
versions (1< 2) =3 and 1< (2 =3) arelegal expressions.

Dangling Else: The presence of both if-then and if-then-else expressions in alanguage
introduces an ambiguity asto whichi f expression an el se clause belongs. The Kitty
convention (as in many other languages) is that an else clause belongs to the innermost if
expression enclosing it. Thus, the expression

if E, then if E, then E; el se E,
isparsed asif it were written

if E, then (if E, then E; else E,)

Exp derives Kitty expressions

() theliteral for “ no value”
intlit asspecified bythelexical conventionsfor integer literals

®
Exp ®
Exp ® charlit asspecified by thelexical conventionsfor character literals
Exp ® ident asspecified by thelexical conventions for identifiers
Exp ® Const
Exp ® Nullop () theparenthesesarerequired
Exp ® Unop (Exp) the parenthesesare required
Exp ® -Exp unary minus operator
Exp ® wites(stringlit)
Exp ® Exp Binop Exp
Exp ® ident := Exp assignment
Exp ® if Exp then Exp el se Exp
Exp ® if Exp then Exp
Exp ® let Decs in ExpSeqO0 end
Exp ® while Exp do Exp
Exp ® for ident := Exp to Exp do Exp
Exp ® (ExpSeq2) Sequence expression, parenthesesrequired
Exp ® (Exp) grouping viaoptional parentheses

ExpSeqg0 derives expression sequences with O or more expressions

ExpSeq0 ® empty expression sequence

ExpSeq0 ® ExpSeql

ExpSeql derives expression
sequences with 1 or more
expressions

ExpSeql ® Exp

ExpSeql ® Exp ; ExpSeql

ExpSeq2 derives expression
sequences with 2 or more
expressions

ExpSeq2 ® Exp ; ExpSeql

Decs derives declaration
sequences with 1 or more
declarations

Decs ® Dec

Decs ® Dec; Decs

Dec derives variable
declarations
Dec ® var ident := Exp

Const derives constants
Const ® ninint

Const ® naxint

Const ® true

Const ® false

Nullop derives nullary (zero-
argument) operators
Nul | op -> readc

Unop derives unary (one-
argument) operators

Unop -> not

Unop -> read

Unop -> writec

Unop -> writei

Binop derives binary (two-
argument) operators
Arithmetic Binops

Binop -> +

Bi nop -> -

Bi nop -> *

Binop ->/ integer division
Bi nop -> % integer modulus

Relational Binops
Binop -> <

Bi nop -> <=

Binop -> =

Bi nop -> <> not equals
Bi nop -> >=

Bi nop -> >

Logical Binops
Bi nop -> & short circuit and
Binop -> | short circuit or

Figure 1: Kitty Grammar

3. Semantics

The meaning of Kitty expressionsis specified informally by English descriptions. All the
constructs taken from Tiger have the same meaning as specified in Section A.3 of Appel’ s book.
We do not repeat those descriptions here. Instead, we (1) describe the meanings of the few Kitty
constructs that are not taken from Tiger and (2) hlghl ight afew subtleties of the constructs taken
from Tiger.

Valued and valueless expressions. Every Kitty expression either denotes an integer value or
it denotes no value. We call the former “valued” expressions and the latter “valueless’. The
valueless expressions are:

(), the“no value’ literd
assignment expressions
applicationsof witec,witei,andwites
i f -t hen expressions
i f-t hen -el se expressions both of whose branches are valueless
whi | e expressions
f or expressions
| et expressions whose bodies are valueless
sequence expressions whose last expressions are valueless

All other valid expressions are valued. Note that an expression is only valid if all contexts
that expect an integer value are supplied with one. It is an error to have avalueless
expression in acontext where a valued expression is required. Itisalso an error for the two
branches of an if-then-else expression to differ in their “valueness’. Such errors can be either
be reported statically (before the evaluation process) or dynamically (when they are
encountered during the evaluation process). In general, static checking will catch some errors
that cannot be detected dynamically.

Character Literals: A character literal denotes an integer in the range [0 .. 255] that isits
associated ASCII value. Here is a table showing the relationship between integers and
character literals for those characters with ASCII valuesin therange [0 .. 127]:

o'"@ 1.'~A 2:'~B 3:'~C 4:'~D 5:'AE 6:'AF 711G
8"AH 9:'"\t" 10:'\n" 11:'~AK 12:'AL' 13:'*M 14:'~N 15:'~O
16:'~pP" 17:'*Q 18:'*R 19:'"S 20:'AT 21:' AU 220 AV 2300 AW

24:' "X 250 AYY 260 NZ0 27 A 28 A\ 290 At 300 ANt 31 A
32:' ' 33! 34:'"" 35:'# 36:'% 37w 38:'& 39:'\"
40: ' (" 41:t)" 42:t 430+ 44: ' 4510 -0 46: .0 470
48:'0" 49:'1" 50:'2" 51:'3" 52:'4" 53.'5 54:'6' 55:'7
56:'8' 57:'9" 58 ':' 59:';' 60:'< 61:'=" 62:'> 63:"'7”
64:'@ 65:'A 66:'B 67:'C 68:'D 69:'E T70:'F 71.'G
72:'H 731" 7473 75:'K 76:'L 77'M 78:'N 79:'O
8o:'P 81:'Q 82:'R 83:'S 84:'T 85'U 86:'V 87:1'W
88:'X 89:'Y 90:'Z 91:'] 92: "\ 93"]' 94:'~" 95!
96:"' ' 97"a‘ 98"b' 99:'c" 100:'d" 101: 102:'f' 103: g
104:' h' 105:°' 106: j 107:' k' 108:'1' 109: ni 110:'n" 111:
112:'p' 1183: q 114: 115:'s" 116:'t' 117:'u' 118:'vV' 119:'W
120:'x" 121:'y’ 122:'2' 123: " {' 124:'|' 125:'}' 126:'~" 127:'"?

In general, there may be several character literals corresponding to the same value. For
instance, " \t','\~1',and'\009' areall character literals denoting the integer 9.

Because Kitty character literals stand for integers, they can be used in any context where an
integer is expected. For instance, the Kitty expression' A' - ' a' denotesthe integer 32 (the
result of 97-65).

Constants: Like character literals, the constantst r ue, f al se, mi ni nt, and maxi nt denote
particular integers:

true: 1

fal se: 0

mnint: -2147483648 = -2%
maxi nt.: 2147483647 =2% _ 1

In Kitty, the integer 0 is treated as false while any non-zero integer istreated astrue. The
constant t r ue is arbitrarily defined to be 1, but it could be defined as any non-zero integer.
The rational behind the values of mi ni nt and maxi nt isthat these are the smallest and largest
integer values than can be expressed in 32 bits (a standard machine word size) using a twos-
complement representation.

Short-Circuit Operators: The Kitty logical operators & and | have short-circuit semantics,
which means that:

E, & E, evaluatesto Oif E, evaluatesto O; in this case E, is hot evaluated.

E, & E, evaluatestoE, if E, evaluatesto a non-zero integer.

E, | E,evaluatestoE, if E, evaluatesto anon-zero integer; in thiscaseE, is not
evaluated.

E, | E,evaluatestoE, if E; evaluatesto 0.

I/O operators: Kitty supports a somewhat different input/output (1/0) model than Tiger. In
Kitty, the input operatorsr eadc and r eadi operate on the current input stream and the output
operatorswri tec, witei,andwites operate on the current output stream. It is assumed
that the current input stream and current output stream can be specified by the environment
for executing Kitty programs, which is outside the scope of this language description.
Nevertheless, it isimagined that most execution environments will provide away to choose
between standard input and afile for the input stream and to choose between standard output
and afile for the output stream.

The meaning of the individual 1/0 operatorsis as follows:

writ ec(E) first evaluates the expression E, which should denote an integer n. The lower
8 bits of n are interpreted as the ASCII value of the character to be written to the current

output stream. For instance, wit ec(65), witec(321),andwitec(577) al writethe
character A to the current output stream (because 321 = 65 + 256 and 577 = 65 + 2* 256).

writei (E) first evaluates the expression E, which should denote an integer n. The digits
of n, preceded by aminus sign if n is negative, are written to the current ouput stream.
For instance, wri t ei (321) writesthethreedigits3 and 2 and 1, whilewritei (-273)
writes the — character and the three digits2 and 7 and 3.

writes(S) writestheindividual characters of the string literal S to the current output
stream. It issimply a more convenient way of specifying along sequence of wri t ec
applications.

readc() consumes the next character from the current input stream, and returnsits
ASCII integer value, which isin therange [0 .. 255]. If there are no more charactersin
the input stream (i.e., the end of the stream has been reached), r eadc returns —1.

readi (E) first evaluates the expression E, which should denote an integer n. Then any
whitespace characters (spaces, tabs, and newlines) in the current input stream are
consumed. If the first non-whitespace character isadigit, or aminus sign followed by a
digit, themaximal sequence of characters interpretable as an integer is consumed, and the
integer represented by the returned charactersis returned. However, if the first non-
whitespace character is not the first character of an integer representation, it is not
consumed, and the value n is returned. Thus, n serves as an indication of the failure of
readi toread aninteger. It is helpful to parameterize over this value because different
failure values are suitable in different contexts.? For instance, 0, -1, mi ni nt , and maxi nt
are all typical values of the argument tor eadi .

4. Examples

This section presents afew examples of simple Kitty programs.

4.1 Count

Hereis aKitty program that counts the number of charactersin the input stream:

l et var count := 0;
var ¢ := readc()
inwhile ¢ >= 0 do
(count := count + 1;
sc := readc());
writei(count)
end

4.2 Upper case

This Kitty program copies all characters from the input stream to the output stream, capitalizing
all lowercase lettersthat it encounters.

let var ¢ := readc()
inwhile ¢ >= 0 do
(witec(if ¢ >>"a" &c <="2z2" /* is c alower case letter? */

thenc +'a" - "A /* Yes -- capitalize it */
el se c); /* No -- just copy it */
c := readc())

end

Capitalization is performed by arithmetic involving character literals (which are just convenient
ways to write integers). Note that thei f -t hen-el se expression in this case returns avalue.

2 Of course, any attempt to encode a failure value as an integer necessarily means that there can be an ambiguity
between actually reading that integer and reading no integer. In more advanced languages, this problem can be dealt
with by either returning a compound data structure (such as ML’ s int option) that can represent failure as avalue
distinct from the integers, or by raising an exception when no integer is read.

6

4.3 Writelnts
HereisaKitty program that prints the integers from 1 to 100 to the output stream:

for i :=1 to 100 do
(witei (i);
witec (if i %10 = 0 then '"\n' else ' ")

)
The output is formatted as s ten lines with ten integers on each line:

12345678910

11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

4.4 Sum

Assume that the input stream is a sequence of whitespace-separated integers that does not
include 0. The following Kitty program sums all the integersin the input stream and writes the
sum to the output stream:

et var sum:= 0O;
var num : = readi (0)
in while num <> 0 do
(sum := sum + num

num : = readi (0));
writei (sum
end

If the input stream does contain the integer 0, then the above program will only sum al the
integers that precede O in the stream. Depending on the expected range of integers, it might be
better to choose a different failure value other than 0.

