
CS301 Compiler Design and Implementation Handout # 19
Prof. Lyn Turbak October 3, 2003
Wellesley College Revised October 14, 2003

Problem Set 3
Due: Friday, October 17

Reading:

• Handout #12: Testing (esp. read about the MakeTester functor)

• Handout #14: Condex and Desugaring

• Handout #15: Introduction to 6811 Programming (Fred Martin)

• Handout #16: 6811 Instruction Set Summary

• Handout #17: 6811 Instruction Set Details

• Handout #18: Programming the Handyboard

Handouts #15 and #16 were distributed in class. Handout #17 can be found outside my office.
(It is also available on-line, but the version outside my office takes one quarter of the 114 pages you
would need to print it out on your own!)

Teams:
Work in pairs, and choose partners that you have not worked with before. There are eight

students working on this assignment (including Jue), so there will be four pairs.

Submission:
Each team should turn in a single hardcopy submission packet for all problems by slipping it

under Lyn’s office door by 5pm on the due date (Fri, Oct. 17). The packet should include:

1. a team header sheet (see the end of this assignment for the header sheet);

2. your final versions of CondexToPostFix.ml and CondexToPostFixTest.ml from Problem 1.

3. your final versions of the assembly programs from Problem 2.

Each team should also submit a softcopy submission of the final ps3 folder. To do this, execute
the following commands in Linux in the account of the team member being used to store the code.

cd /students/your-account-name/cs301

cp -R ps3 /home/cs301/drop/your-account-name/
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Problem 1 [50]: A Condex to PostFix Translator
As discussed in class, it is possible to write a program that translates Condex programs to

PostFix programs. In this problem, your task is to implement a Condex to PostFix translator
by fleshing out the following three functions in the CondexToPostFix module in the ps3 directory:

• val transPgm : Condex.pgm -> PostFix.pgm

Suppose that p is a Condex program and transPgm p yields the PostFix program p’. Then
p’ should have the same meaning as p, in the following sense:

– if p returns an integer i when run on argument list args, then executing p’ on args should
return i (i.e., at the top of the stack).

– if p signals an error when run on argument list a, then executing p’ on a should signal
a similar error.

• val transExp : Condex.exp -> (int -> int) -> PostFix.com list

Suppose that:

– e is a Condex expression;

– amap is an argument map – i.e., a function that maps Condex argument reference
indices to PostFix stack offsets (as discussed in class);

– transExp e amap yields the PostFix command list coms;

– args is an argument list (list of integers);

– s is a stack (i.e. list) of integers in which List.nth s (amap j) = List.nth args j for
all j in [1..(List.length args)].

Then:

– If evaluating e on args returns the integer i, then executing coms on s should yield the
stack i :: s.

– If evaluating e on args signals an error, then executing coms on s should signal a similar
error.

• val transExps : Condex.exp list -> (int -> int) -> PostFix.com list

Suppose that

– [e1;. . .;en] is a list of Condex expressions;

– amap is an argument map;

– transExps es amap yields the PostFix command list coms;

– args and s are as in the specification of transExp.

Then:

– If evaluating ek on args returns the integer ik for all k in [1..n], then executing coms on
s should yield the stack ik :: . . . :: i1 :: s.

– If evaluating e1 . . .ek in order from left to right signals an error, then executing coms on
s should signal a similar error.
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Notes:

• As usual, start this problem set by performing a cvs update -d, and perform an update
every time you log in to work on this problem set.

• To load the translator, connect to the ps3 directory in OCaml via #cd "/students/your-

account-name/ps3" and then execute #use "load-condex-to-postfix.ml". As usual, care-
fully examine the output of the #use to see errors that may have scrolled by.

• Of course, you may need to implement auxiliary functions in addition to the three required
functions in CondexToPostFix.

• The descriptions of transPgm, transExp, and transExps above are specifications (i.e. con-
tracts). They do not say how you must implement the functions, just how the functions must
behave.

• For your PostFix implementation, you may either use your solution code from PS2 or my
solution code from PS2 (now in the postfix directory). The load-condex-to-postfix.ml
file is configured to do the former, but you can easily change it to do the latter.

• It is recommended that you translate condex programs in stages:

1. First, handle integer literals and arithmetic operators;

2. Next handle relational operators and conditionals;

3. Next handle logical operators;

4. Finally handle argument references.

• You will need to test your translator. Put your testing code in the module CondexToPostFixTest.
This file can be relatively short because:

– You can use the MakeTester functor described in Handout #12 to simplify the con-
struction of a tester. See the updated IntexInterpTest, CondexInterpTest, and
PostFixInterpTest (from the ps2 solutions) for sample uses of MakeTester.

– You can use CondexInterpTest.entries for most of your test entries.

One tricky aspect of testing is handling errors, since the error messages given by Condex

and PostFix may not be exactly the same. As noted in class, you can address this by (1)
changing the PostFix error message to be consistent with the Condex messages or (2)
by translating the Condex error messages to PostFix error messages in your tester. The
second approach is more elegant, but more work.

• In order to handle certain out-of-bounds argument references in Condex programs, it is
necessary to catch such references during the translation process (because they won’t be
caught when running the translated program). The following exception has been provided in
CondexToPostFix for this purpose:

exception TransError of string

It should be raised when a statically determinable error is found during the translation process.
This exception must be properly handled in the testing code.
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• Since the translator deals with two languages that share some of the same constructor names
(such as Pgm, Add, GT, etc.), it is necessary to distinguish these by using explicit qualification
– e.g., Condex.Add vs. PostFix.add. To avoid the verbosity of these notations, we can
introduce abbreviations for the modules via the following declarations:

module C = Condex

module P = PostFix

Now we can instead write C.Add and P.Add.

• There are several tests in CondexInterpTest that highlight the differences between & and &&

and between | and ||. Although you do not have to translate && and || (because they are
syntactic sugar), you do have to understand the differences in terms of translating & and |.
In particular, note the following:

– (& 2 3) evaluates to 1 but (&& 2 3) evaluates to 3 (since it’s equivalent to (ifnz 2 3 0)).

– (| 0 4) evaluates to 1 but (|| 0 4) evaluates to 4 (since it’s equivalent to (ifnz 0 1 4)).
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Problem 2 [50]: 6811 Programming
In this problem, you will write the following three 6811 assembly programs for the Handyboard:

1. [15] gcd Prompt the user for two unsigned 16-bit numbers in the top row of the LCD and
display the GCD of these numbers in the bottom row. The result should also be returned in
the D register. For calculating the GCD, use the same iterative algorithm as the following
OCaml function:

let rec gcd a b =

if b = 0 then

a

else

gcd b (a mod b)

2. [15] follow-light When the HandyBoard is appropriately attached to a SciBorg robot (see
Handout #18), causes SciBorg to follow a light using the two photosensors at the front of the
robot. Use the difference between the photosensor readings to determine which motor is on.
Stop when STOP button pressed or when either bumper is pressed.

3. [20] display-binary Prompt the user for an unsigned 16-bit number on the top row of the
LCD and displays the binary representation of this number (without leading zeroes) in the
bottom row. You should use the same recursive algorithm as in the following OCaml function
displayBinary:

let print = StringUtils.unbufferedPrint

let rec displayBinary n =

if n <= 1 then

print (string_of_int n)

else

(displayBinary (n/2); print (string_of_int (n mod 2)))

For example:

displayBinary 0;;

0- : unit = ()

# displayBinary 1;;

1- : unit = ()

# displayBinary 5;;

101- : unit = ()

# displayBinary 6;;

110- : unit = ()

# displayBinary 28;;

11100- : unit = ()

# displayBinary 29;;

11101- : unit = ()

# displayBinary 30;;

11110- : unit = ()

# displayBinary 31;;

11111- : unit = ()

# displayBinary 32;;

100000- : unit = ()
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Notes:

• Before you begin, make sure you understand all the code in the final version of hc11/test.asm,
which will be covered in lecture on October 15.

• HandyBoards, Serial Interface/Charger Boards, and SciBorgs can all be found on some book-
shelves in SCI E125 (the hardware lab). You should not need to move the transformers (wall
warts); some of these are already in the micro-focus. When you are finished with the hard-
ware, please return it to SCI E125 and make sure you leave the HandyBoard charging
(i.e., the yellow light on the SIBC should be on).

• Write your answers in the file ps3.asm within the ps3 directory. This file already contains
a skeleton that loads the library functions in prolog.asm and has a frob-knob menu for the
three subroutines.

• To download ps3.asm onto the HandyBoard:

1. Make sure you are connected to the ps3 directory within the OCaml interpreter.

2. Execute #use "load-hb.ml". (You only need to perform this step once, not every time
you do a download.)

3. Connect the telephone cord from the Serial Interface/Battery Charger to the Handy-
Board. The telephone cord connections can be flakey on both ends; you have a connec-
tion when the yellow power light goes on on the SIBC.

4. Put the HandyBoard in download mode by pressing the STOP button when you turn
the power switch on.

5. Execute Assembler.pad "ps3.asm" in OCaml. When this function returns, turn the
HandyBoard power switch off and then on again.

• Debugging assembly code is challenging! The display routines in prolog.asm are very helpful
for debugging.

• In follow-light, keep in mind that their may be electronic and mechanical bugs in addi-
tion to code bugs. Check your analog sensors and switches using the analog-display and
digital-display routines in test.asm.
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Problem Set Header Page

Please make this the first page of your hardcopy submission.

CS301 Problem Set 3
Due Friday, October 17

Names of Team Members:

Date & Time Submitted:

Collaborators (anyone you or your team collaborated with on the problem

set):

In the Time column, please estimate the time you or your team spent on the parts of this problem

set. Team members should be working closely together, so it will be assumed that the time reported

is the time for each team member. Please try to be as accurate as possible; this information will

help me design future problem sets. I will fill out the Score column when grading you problem set.

Part Time Score

General Reading

Problem 1 [50]

Problem 2 [50]

Total
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