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Tiny Compiler: Back End
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After wrapping up loose ends in the front end of our Tiny compiler, we turn to the back end. Here we
make three main steps. Our front end already parses and produces an AST. We first build a translation to
from AST to intermediate representation: instructions for an abstract machine with infinitely many named
storage locations. Next, we take a quick look at a code generator I have written to translate this intermediate
representation to x86 assembly code. Finally, backing up to the intermediate representation again, we add
some basic machine-independent optimizations.

Directions:

• Work through this activity in groups of 2-3. Choose different partners than the ones you had
on Tuesday.

• As you work, check in with me when you have questions.

• I will not collect anything from you, but do write your thoughts down for reference. Naturally, you
will want to write down the programming parts too.

• I do not expect to finish today, but hopefully we will be able to run some compiled code. There is
no requirement to continue work on this. Feel free to continue exploring if you are curious, but please
prioritize your preparation for the first tutorial meeting. We will take a couple minutes in meetings or
lab next week to hit the highlights.

• Refer to Scala documentation on the tools page as needed:
https://cs.wellesley.edu/~cs301/tools.html#scala

Setup

With Mercurial, run:

hg commit; hg pull && hg merge && hg commit

This will commit your working version, pull my updates, merge them into your code, and commit the result.
I have provided a separate project (tiny2) that contains front end code for this part. If you want to keep

yours, get the new code and then copy over all the files except Parse.scala.

Semantic Analysis

We do only minor semantic analysis in our Tiny compiler. Typically that stage involves tasks like type-
checking (we have only one type) and checking for proper use of variables. We will check to ensure variables
are defined before they are used, but we will do so during the translation from ASTs to intermediate code,
since it is so straightforward for Tiny.
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Intermediate Representation

The next step is to translate our Tiny AST to intermediate code for a simple abstract machine that is
closer to the model of a real computer exposed by assembly language, our eventual target. Unlike ASTs,
intermediate code programs have flat, sequential structure.

Our abstract machine has infinitely many storage cells, each with a unique name: x1, x2, etc. The
abstract machine supports a small set of instructions that read operands, perform simple computations on
them, and store the result in a destination cell. Instruction operands, o, are either the name of a storage
cell (thereby referring to the cell’s contents) or a literal number value. A program is a linear sequence of
instructions to be executed in order. The abstract machine supports the following instructions:

• x := o
A copy instruction reads the source operand, o, and writes it in the destination cell, x.

• x := o1 + o2
An add instruction reads the two source operands, o1 and o2, and stores their sum in the destination
cell, x.

• x := input
An input instruction reads an integer input from the user and stores it in the destination cell, x.

• print o
A print instruction reads the source operand and prints it as output.

This style of abstract machine language is called three-address code (TAC), since each instruction ad-
dresses at most three operands.

Exercise 1. What does the following TAC program print if the user provides input 7?
x1 := 3
x2 := input
x3 := x1 + x2
x4 := x3 + x3
print x4
x5 := x4 + 5
x6 := x5 + x2
print x6

Tangent. Look at that TAC again. It looks quite similar to a Tiny source program with mildly different
syntax. In fact, putting aside superficial syntax differences, it appears that our TAC language is basically
the Tiny language with expression nesting restricted to one level. Nonetheless, we use an explicitly separate
TAC representation in our Tiny compiler (and in our later compiler, when there will be wider differences in
the languages).

Exercise 2. Write a TAC program to print 4i1 + 2i2 + 5, given any inputs i1 and i2, in that order.

As with the original Tiny source syntax, this syntax is just a convenient way to write down a concrete
representation of an abstract program structure. Unlike the original Tiny syntax, we will never use this
TAC syntax within our compiler. It is just a convenience for pencil and paper.

Exercise 3. Read the IR.scala file. Rewrite your answer from Exercise 2 as a Scala expression of type
Seq[TacInstruction]. Use a Vector, which is also a Seq, and acts similarly to an array while also sup-
porting insert, prepend, and append operations. A Vector[Int] holding the numbers 1, 2, 3 in order is
constructed using the Scala syntax Vector(1,2,3).
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Translating ASTs to TAC

Next, we translate a Tiny program AST to an equivalent TAC program. These are rather different struc-
tures. The program AST is a hierarchical, non-linear tree. The TAC program is a flat, linear sequence of
instructions. ASTs have nested expression nodes. TAC instructions accept only storage cells or literals as
operands. We must be sure that our translation is semantics-preserving. That is, the observable behavior
(input and output for us) of the translated program must be identical to that of the source program. Like
the recursive descent parser used to build the AST from a linear source code string, we will use a recursive
algorithm to traverse the AST and emit a new linear structure.

The key is to traverse through the AST with a recursive algorithm, emitting one or more TAC instructions
for each node. The result of each expression (i.e., each node) will be stored in its own TAC storage cell. To
translate an expression node that needs this result, we simply emit an instruction that will read the contents
of the cell where the result is to be stored. Let us derive the algorithm for this translation. For now, omit
variables and assignments.

Exercise 4. Draw the AST for the Tiny program print ( 7 + ( input + 5 ) ) ;. Its TAC translation
is shown below. Match each node in the original AST to the corresponding instruction in the translated
TAC. What tree traversal order (one of in, pre, post, level) could produce these instructions in this order?
Try to reverse-engineer the algorithm that would generate this code given the AST you extracted. (Use
pseudocode on paper or whiteboard. Stick to high-level description. Ignore Scala for now.) The algorithm
is described below if you get stuck. (Feel free to go straight to that if short on time.)

x1 := 7
x2 := input
x3 := 5
x4 := x2 + x3
x5 := x1 + x4
print x5

Tangent. It is tempting to translate an AST for an expression ( 3 + 5 ) to a single TAC instruction,
x2 := 3 + 5, or even simpler, x2 := 8. Resist the urge. Stay away from special cases; they will complicate
our translation algorithm. (Spoiler alert: our optimizer will fix this for us later. Let’s keep the concerns of
translation and optimization separate.)

Exercise 5. Try your proposed AST-to-TAC translation algorithm on the program:

print ( ( 2 + 4 ) + ( 6 + 8 ) ) ;

Check your answer by running your TAC program manually.

TAC Generation. The algorithm for generating TAC from an AST is explained generally here. The
commented Scala implementation in IRGen.scala makes this more concrete. We provide part as an example;
you implement the rest.

For expressions, follow this basic plan:

• Store the result (if any) of each AST node in a unique TAC cell. (Even an integer literal should be
copied into a TAC cell!)

• Generate code by a post-order traversal of the AST:

– Emit code for all subexpression children of this node, remembering the destination cell of the last
instruction emitted by translating each child node.

– Emit an instruction for this node, using the child destination cells as the corresponding source
operands of the instruction.

For statements, emit instructions to compute the expression (using the plan above) and use the last
destination cell in the resulting instructions as the source operand for an instruction to implement the
statement.
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For programs, simply emit instructions for each statement in order. All three of these get slightly more
involved when we introduce variables later.

Exercise 6. In IRGen.scala, read the Scala code for translateProgram and the Print case in translateStmt.
Ignore the symtab argument and the Assign case for now. Ask questions about anything that does not make
sense. The following Scala operations are used (and possibly unfamiliar):

• Pattern-matching: match with some cases. Quiz your CS 251 teammates about this, check the relevant
section in the Scala for Java Programmers tutorial linked on the web page, or ask me.

• Sequence (Seq) operations. We use immutable Vectors as sequences, applying the following operations:

– a ++ b produces a new sequence with the elements of a followed by the elements b.

– seq :+ elem produces a new sequence with the elements of seq followed by elem.

– seq.last returns the last element of non-empty sequence seq.

• fresh(), which is provided, returns a new TacCell with a fresh, unique ID every time it is called.

Exercise 7. In IRGen.scala, implement translateExpr. The entire body is a single pattern-matching
expression with one case for each type of Expr. Each case should return a Seq[TacInstruction]: a sequence
of TAC instructions. We provide the Input case. Add the Num case, then test it on a simple program. Repeat
for Add. Ignore Vars for now. When you need to call translateExpr, pass the existing symtab argument
along. (We use it later for variables.)

Variables and Symbol Tables. The last AST-to-TAC translation concern is variables. A natural repre-
sentation of Tiny variables exists: represent each unique Tiny variable by a unique TAC cell. An assignment
statement is translated to a copy instruction that copies the source into the variable’s corresponding cell.
Later variable references are translated to instructions that copy from the same cell. This requires a durable
mapping from variable name to TAC cell, since variable references may appear arbitrarily later in the pro-
gram. For this, we use a symbol table. (A symbol table has more jobs in a compiler for a larger language.)

Translating an assignment statement requires the usual translation of the source expression and an
instruction copying the expression result to the assigned variable’s TAC cell. If the variable is already
mapped in the symbol table, reuse its mapped TAC cell.1 Otherwise, create a fresh TAC cell, map it in the
symbol table, and use the fresh cell.

Exercise 8. Draw the AST for the following Tiny program (or use the front end to generate it), then
translate the AST to TAC by hand. Build a symbol table as you go to track which variable maps to which
TAC cell. Double check your translated code: run it by hand and check the output.

x = ( 4 + input ) ;

y = input ;

print ( x + ( y + 297 ) ) ;

Exercise 9. Implement translation of assignment statements (the Assign case in translateStmt) and
variable reference expressions (the Var case in translateExpr). Test on a few programs.

Our Scala code represents the symbol table with a mutable2 Map[String,TacCell]: a map where keys
are source-code variable names (as String) and values are the TAC cells that represent them (as TacCell).
This symbol table is shared by all levels of the translation algorithm since Tiny has no scoping or control-flow
constructs.

Entries for key k in map symtab are accessed with symtab(k) and updated with symtab(k) = v.
symtab.contains(k) checks if symtab contains an entry for key k.

Exercise 10. If you did not happen to do this in Exercise ??, add checks to ensure all variable references
occur after definitions of their variables. This is simple: if the variable is not in the symbol table when
trying to translate a reference to it, it has not been defined yet. This adds a line or two to translateExpr.

1CS 251 note: This implements a mutable variable semantics for Tiny. Nonetheless, since Tiny lacks any scoping or control-
flow, mutable variables will act identically to immutable bindings with shadowing. In other words, we could just as well map
a variable to a fresh cell at every assignment with no discernible difference. This implementation ambivalence is not present in
more interesting languages.

2Immutable would be fine if we also passed its state along in the return values.
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x86 Code Generation

The last stage in a compiler is called Code Generation: it translates the intermediate code to code in the
target language. For our Tiny-to-x86 compiler, that’s x86 assembly language. There are actually many
interesting machine-specific optimizations to do at this stage, such as mapping TAC cells to registers in a
way the minimizes copying and use of the stack, choosing which variables could be mapped to registers vs.
stack locations, selecting the best set of instructions, and more.

For the sake of building the Tiny compiler quickly, our code generator is straightforward and applies no
optimization at all. It does two basic tasks:

1. Map TAC cells to stack locations in memory, which it does in truly dull fashion by using the TAC
cell’s ID to assign an offset into the stack frame.

2. Translate each TAC instruction to one or more x86 instructions following a simple template.

Feel free to read through this later.
After generating x86 assembly code, we run the assembler and linker to build an executable.

Exercise 11. (The Link stage will not work on Windows.) Uncomment the CodeGen and Link stages in
Compiler.scala. Run your Tiny compiler on a program of your choosing. It should produce an executable
file a.out. And, for the moment of truth: run the command ./a.out

Did it work??? Debug until it does, then celebrate accordingly!

Optimization

Congrats! You have a compiler that reads Tiny source code and produces an x86 executable! Let’s make it
even better. We will not improve the simplistic code generator (feel free to think about that on your own),
but we will do some machine-independent optimization on the intermediate representation. Just as with the
AST-to-TAC translation and the code generation stage, optimizations must be semantics-preserving.

Exercise 12. Consider briefly (no more than a minute or two): what are some benefits of doing optimization
on intermediate code instead of on source code or machine code?

Design. Later in the course, we spend signficant time developing a general framework for expressing
optimizations. For now, we implement a few standard optimizations with ad hoc techniques (though later in
the course you will be able to look back and see the unifying thread). Just as with AST-to-TAC translation,
a key rule for our optimizations is to keep them general. It is tempting to see TAC like:

x1 := 4
x2 := 5
x3 := x1 + x2
print x3

and try to build an optimizer that automatically recognizes this pattern all at once and produces the
equivalent program print 9. A pattern-based approach is actually useful in efficient machine-code generation,
but at this stage, we want to avoid a large, unruly, error-prone collection of special cases.

An optimization is just a function that takes a TAC program as input and returns another (equivalent)
TAC program as output. This means that we can make a larger optimization by composing two smaller
optimization. We therefore develop a small suite of minimal, independent optimizations that do little on
their own, but have big impact when composed.

Copy Propagation. You have likely been irritated at all of the wasteful copy instructions our AST-to-
TAC translation emitted. They are everywhere! The copy propagation optimization will help eliminate
them. Here is the basic idea: if a TAC instruction i has a storage cell as a source operand and this cell was
last updated by a copy instruction, it is equivalent for i to use the source operand of that copy instruction
instead. For example, we may safely replace this code:
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x1 := 300
x2 := input
x3 := x2
x4 := x1 + x3
print x4

with this code:
x1 := 300
x2 := input
x3 := x2
x4 := 300 + x2
print x4

via two copy propagations in x4 := x1 + x3:

1. Replace the source operand x1 by 300, since x1 was last updated by copying 300.

2. Replace the source operand x3 by x2, since x3 was last updated by copying the contents of x2.

Copy propagation stops here: we cannot predict the input that will be stored into x2 when the program is
run, so we cannot propagate it as an input to the add instruction. The print instruction uses x4, but it was
produced by an add instruction, not a copy instruction.

Exercise 13. Read the code for copyPropagate in Opt.scala and try to understand how it performs copy
propagation algorithmically.

Dead Code Elimination. Dead code is code that does nothing useful: code that computes a result that
never affects any observable behavior of the program. (In Tiny, that means it does not affect input/print.)
For example, the second line of this Tiny program is dead code:

x = input ;

y = ( x + 4 ) ;

print ( x + x ) ;

A result is computed and stored in y, but y never affects any printed output. We could remove the second line
without changing the observable behavior of the program. This is the purpose of the dead code elimination
optimization. Feel free to take a look at the implementation in Opt.scala.

Is it useful? Our AST-to-TAC translation never introduces dead code. Tiny programmers may write
dead code, but even if they do not, this optimization is still useful because of copy propagation. Looking
back at the copy propagation example, note that the unoptimized code contained no dead code, but the
optimized code offers dead code elimination a moment to shine: a dead copy instruction x3 := x2.

Constant Folding. Our last classic optimization is constant folding. If a computation instruction (e.g.,
add) has literals (constants) for all source operands, pre-compute the result at compile time and replace the
instruction with a simple copy instruction, where the source is the literal pre-computed answer. In our case,
this means replace instructions like x1 := 300 + 1 with x1 := 301.

Exercise 14. Implement constantFold in Opt.scala. Use the map method of sequences to produce a new
sequence of TAC instructions where instructions meeting the constant-folding criteria are replaced and the
rest stay as is. Consult examples in copyPropagate or deadCodeElim, your CS 251 teammates, or Ben for
help with map. Scala’s anonymous function syntax is (param => body). constantFold is much smaller
than the other two optimization. My implementation is 4-5 sparse lines.

Composing Optimizations. Interestingly, our AST-to-TAC translation never produces instructions that
can be constant-folded! But just as with dead code elimination, constant folding becomes useful when copy
propagation is used.
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Exercise 15. Apply copy propagation to this code. Then apply dead code elimination to the result. Then
apply constant folding to that result. What do you get? Can you reapply optimizations to make the program
even smaller?

x1 := 7
x2 := 8
x3 := x1 + x2
print x3

It turns out that these three optimizations can feed off each other if composed repeatedly. To get the best
result, we run them until a fixed point, a TAC program for which a pass through all three optimizations
produces the exact same program. At this point, there is nothing more for them to do.

Exercise 16. In the apply method in Opt.scala, replace once with fixpoint. Run the compiler on a
couple Tiny programs to see how much the fixpoint improves optimization.

Reflections

At this point we have an optimizing compiler for Tiny. It could use smarter code generation and a few
other improvements, but we have managed to consider interesting problems and solutions at just about
every stage in a typical compiler architecture. Compilers for larger languages will complicate these problems
significantly, so as we move on to start our deeper consideration of each compiler stage over the course of the
semester, keep the following in mind: The combined jobs of a compiler are complicated overall if we consider
a compiler as a black box. A key to a clean, approachable implementation is to decompose large complicated
problems into smaller simpler problems, solve those individual problems in a simple, elegant way, and then
compose the solutions. This is true at a small scale, in the way we design recursive case-by-case translations
or many simple individual optimizations. It is just as true at a large scale, where we break the compiler
down into several independent stages.

I hope you enjoyed this exercise and find it useful to gain an initial perspective for the rest of the semester.
If you have any thoughts on how helpful it was or how to improve it, please let me know. Happy compiling!
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