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IC Compiler Back End

Plan

By the end of this phase of the project, you will be able to run IC programs generated by your compiler!
You will implement:

• a translator to convert your AST representation to a TAC intermediate representation; and

• a code generator to convert TAC programs to x86 assembly code.

Code generators would seem no more complex than other parts of a compiler, but they are notorious for
subtle bugs. Start early and design carefully before you start coding. Implement, test, and
commit your code incrementally. If you are debugging issues with the code generator, seek help with
effective debugging techniques before burning valuable time on misinformed or haphazard bug hunts.

Implementation: Lowering ASTs to TAC

Three-Address Code. The translator should translate the code of each method to an appropriate se-
quence of TAC IR instructions. These will probably include the standard kinds of instructions: unary and
binary operations, data movement instructions, labels and branch instructions, method calls, return instruc-
tions. You are responsible for choosing the specific instructions for your own TAC instruction set. Take the
TAC description on the project web page as a starting point.

You must clearly describe your TAC instruction set in your documentation.

Generating Three-Address Code. After deciding on a TAC instruction set, you will implement a
translation from your AST representation to TAC. Your translation phase must convert high-level constructs
such as if and while statements, short-circuit conditional expressions, break and continue statements,
etc. into low-level code using jump instructions. Optionally, you may try to generate “clean” TAC code
with no consecutive labels, no unnecessary jumps, etc. These are optimizations — do not implement them
unless you have completed the basic assignment with time to spare. Do not try to minimize the number of
temporary names within a method, for the reasons we discussed in meetings.

Run-time Checks. Your three-address code must also include appropriate run-time check instructions.

• For each array access a[i] (read or write), the compiler must insert two checks before the actual
instruction that accesses the array: one check that tests if a is not null, and one that tests if the access
is within bounds.

• When translating the length expression e.length, the compiler must insert a null check for e , followed
by the instruction that retrieves the array length.

• To translate a dynamic array allocation new T[e ], the compiler must insert a check to verify that the
array size e is non-negative.

• For each field access e.f or method call e.m(), the compiler generates a null check for e before the
code that accesses the field or calls the method.

• For each division or mod operation, check for division by zero.
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Method Calls and String Concatenation. The instruction generated for a method call o.m(...) must
have the receiver object o as its first argument, followed by the other explicit arguments. For non-qualified
calls m(...) where the invoked method m is virtual, the first argument of the call is this.

To lower the concatenation of strings s + t to TAC, the compiler should generate a call to the hidden
library function Library.stringCat(s,t ).

Code Structure. Implement the TAC representation and TAC generator in an ic.tac package. Design
suggestions:

• I strongly encourage implementing the TAC instructions as a collection of case classes extending an
abstract TACInstr class.

• Create a TACList class that stores a list of TAC instructions. After translating to TAC, each method
declaration in your AST would then have a TACList attached.

• Note that the operands to most TAC instructions can be (a) program variables, (b) temporary variables,
or (c) constants. The design of your TAC classes should support this.

• You may wish to design your TACList and TACInstr classes to support generic mapping/folding
operations to make it easy for clients to traverse and process TAC lists (for printing, generating x86
code, etc.).

• To help understand generated code and debug TAC and x86 code generation, I encourage you to design
your TAC classes (and x86 code generator) to support String annotations on individual instructions
that can be printed out as “comments” in your output later, as in:

label _if3: # true branch for if on line 3

...

t1 = x + 1 # line 11

You can even include a TACComment instruction form that does nothing but generate a comment to be
stored at a specific point in the target program.

Command line invocation. Your compiler will be invoked with a single file name as argument, as before.
With this command, the compiler will perform all of the tasks from the front end. Next, it will convert the
AST into three-address code.

In addition to all of the options from the previous assignments, your compiler must support the command-
line option -printIR: print a description of the three-address code for each method in the program. Indicate
the class name and the method name for each method. For readability, separate the code for different
methods by blank lines.

Finally, as described in the next section, the compiler will generate assembly code in a file with the same
name as the input program, but with additional extension “.s”.

Implementation: x86 Code Generation

Simple Code Generation. Next, you will translate your three-address code into x86 assembly code.
You will perform a straightforward, unoptimized code generation by translating each IR instruction into a
sequence of assembly instructions. Do not attempt to optimize at this point. The generated assembly code
may be (very) inefficient, but it must be correct and it must match the semantics of the input program.
Your translation must correctly handle all of the following:

• Stack Frames. Generate the calling sequences before and after invoking functions, and at the beginning
and the end of each procedure (prologue and epilogue). Registers %rax, %rcx, %rdx, %rdi, %rsi, %r8
- %r11 are caller-save, and registers %rbx, %rbp, %rsp, and %r12 - %r15 are callee-save. You must
assume that the contents of caller-save registers might be destroyed at each call. On the other hand,
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if a procedure (including one you generate) modifies callee-save registers, it must restore them to their
original values before returning. Follow these rules in all generated code.

Under the x86 64 GNU/Linux ABI, the first 6 arguments (from left to right, don’t forget the receiver
for method calls) are passed in registers %rdi, %rsi, %rdx, %rcx, %r8, and %r9. Remaining arguments
are pushed onto the stack, with the earliest closest to the top of the stack (i.e., the lowest memory
address). You must follow this convention when calling external (i.e., __LIB) code and where your
code is called by external code (i.e., in __ic_main).

You may adopt any calling convention in generated code that calls (or is called by) only other generated
code. For example, you may find it easiest to store/find all arguments/parameters on the stack (I
actually encourage this at least to start), optionally using %rbp as a base/frame pointer. Any consistent
internal calling convention is acceptable for this project as long as you follow the ABI when interfacing
with external code.

Return values are always passed in the %rax register.

Keep stack frames 16-byte aligned. The stack pointer will be properly aligned when your code is
entered. All you need to do is ensure each stack frame (including all parts, e.g., return address) is a
multiple of 16 bytes in size.

• Variables. Each local variable should be allocated on the current stack frame at the beginning of the
enclosing method. Both local variables and method parameters will be accessed using offsets in the
current stack frame.

• Objects. For an object allocation expression new C(), your assembly code should invoke the library
function LIB allocateObject(s), which returns a reference to the start of the newly allocated and
zeroed object. The size s of the allocated object must be chosen to accommodate all of the fields of
the allocated object, plus 8 bytes to store a reference to the dynamic dispatch table (vtable/method
vector). After allocating space for an object, your code must set up this reference and the use virtual
table to resolve method invocations. For virtual calls o.m(...) the code must look up the vtable of
object o for method m and perform an indirect call to the appriopriate code. For method names in
the generated assembly, use a naming scheme where a method m of a class A is named A m. For field
accesses o.f you must access the memory location at address o plus the constant offset for field f.
Field accesses of the form f are equivalent to this.f.

• Arrays and Strings. Arrays and strings will be stored in the heap. To create new arrays, use the library
function LIB allocateArray(n), which returns a reference to the first element of a newly allocated
and zeroed array large enough to store n elements. All array elements have a size of 8 bytes, the size
for all types in the language (booleans, integers, and references). The array allocation function stores
the array length in the memory word preceding the base address of the array returned (i.e., at offset
-8).

String constants should be allocated statically in the data segment using the ASCII encoding, with one
byte per character. Strings do not have null terminators; instead, each string is preceded by a word
indicating the length of the string. As with array lengths, this length should be stored at an offset
of -8 from the address of the string character array. The length and representation of a string should
treat escaped characters such as \n as one single character.

• Run-time checks. You must implement the run-time check instructions present in your low-level rep-
resentation as sequences of assembly instructions that perform those checks. Print a message and call
LIB exit(n) to terminate the process with exit code n after reporting the error.

• Library functions. Calls to Library functions (including the stringCat function that implements
string +) are translated into function call sequences using the naming convention given above. For
example Library.readi() should be converted into a call to the function LIB readi in the assembly
code. You must pass the arguments to the library functions in registers: use %rdi for the first parameter
and %rsi for the second. The result will be in %rax as usual. The code for these functions will be
available in the IC runtime library.
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• Main function. The assembly code must contain a global function named ic main. When a program
is executed, the run-time library will set up the command-line argument list as a valid string[] object
and then call your ic main with that string array in register %rdi. Given a program whose main

method resides in class A, the ic main function should create an A object and then invoke its main

method, passing along the provided argument list.

Code Structure Implement all code for TAC-to-x86 code generator in the ic.cg package. I will provide
a skeleton for a code generator that will produce much of the boilerplate assembly you need to get things
working. More on that soon. I suggest splitting your code generate into a couple separate passes:

• Compute Offsets:

– the object offset for each declared field

– the vtable (method vector) order for each class and the vtable index for each method

– the stack frame offset for each TAC variable, including parameters, local variables, and temporary
variables created during TAC generation.

Store this information in declaration nodes in the AST (classes, fields, methods, declared param-
eters/variables) and in TAC variables (temporaries). Extend your symbol table printer and TAC
printer to show this information.

• Generation x86 Assembly Code:

– Generate all necessary data literals (string literals, vtables/method vectors).

– Generate code for each method, code for error handlers, and code for the __ic_main wrapper.

Tools

When you get to code generation, you will want to use an x86-64 GNU/Linux environment. The wx appliance
should work well. Things can also work on Mac OS X, but there are a couple small workarounds necessary.
Windows differs significantly, but you might have luck with Cygwin. I will support only GNU/Linux.

If you are working on lab machines, you can run the compiler directly, but since these poor machines are
still stuck with a 32-bit version of GNU/Linux, you will need to ssh to tempest to run the generated code.
Since you have the same home directory on tempest and all lab machines, this is actually pretty transparent.
Just keep an ssh session open.

Assembling and Linking. I have provided a simple Link.scala file that will allow you to run this step
directly from your compiler if you wish. Run the compiler using the icc wrapper script for Link.scala to
work without extra configuration.

Given an input file file.ic, your compiler will produce an assembly file file.ic.s. You can then use
an assembler to convert this assembly code into an object file file.o and the linker to convert this object
file into an executable file. While there are separate assembler and linker tools, it is simplest to use gcc, the
GNU C compiler, to do both steps for us:

gcc -m64 -g -o file file.ic.s runtime/libic64.a

The library file libic64.a (in the r̊untime directory) is a collection of .o files bundled together, containing
the code for the library functions that are defined in the language specification, along with run-time support
for garbage collection via a freely available conservative collector: http://hboehm.info/gc/

The -g flag to gcc will create executables that can be run inside gdb, the GNU debugger. The -m64 flag
ensures the compiler uses the x86 64 instruction set.

You may also find it useful to look at the assembly code generated by a C compiler. You can do this in
gcc with the -S option. For example, gcc -m64 -S a.c generates the assembly code file a.s.
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Mac OS X. Ignore this unless you really want to run your IC programs directly on your Mac. Use
the libic64.osx.a library instead of libic64.a. Also, unlike GCC, the assembler in the LLVM toolchain
(installed by xcode-select --install on Mac OS X and aliased to gcc) does not accept absolute addresses
as values. This means that if your code generator produces something like this, which uses the absolute
address corresponding to the label __string_literal_13:

movq $__string_literal_13, 8(%rsp)

It will need to produce something like this instead, which uses a relative address:

leaq __string_literal_13(%rip), %rax

movq %rax, 8(%rsp)

GDB. Use GDB to help understand the execution of your generated code. See tools page for more. To
run executable foo under GDB: gdb foo. Typically, set a break point at __ic_main or other later point of
interest, type run, then step through and inspect your program’s data from that point on.

Command Meaning

b ic main or break ic main Set a breakpoint at the start of ic main.
r or run Run the program.
c or continue Continue running the program until the next breakxpoint.
s or step Execute one line of assembly.
n or next Execute one line of assembly. If it is a call instruction, run until

the function call returns.
si or stepi Execute one instruction (even if compiled from C).
ni or nexti Execute one instruction (even if compiled from C). If it is a call

instruction, run until the function call returns.
list Print out the assembly code around the current program counter.
disas Print out the disassembled machine code of the current procedure,

including a cursor pointing to the next instruction to execute.
info registers Print out the contents of the registers.
help Prints help info.
x address Print the contents of the given memory address. Type help x for

more details.
bt Show the call stack.
quit Quit the debugger.

Schedule

There is one intermediate checkpoint for this phase. Be sure to add comments to your code to document
any special cases, describe tricky parts, and provide an overview of how any non-trivial class is designed.

Thursday, April 7: Your compiler must support the -printIR option to print out the TAC instructions for
each method. Document the design of your TAC instruction set. Your compiler should also complete
the first pass in code generation: computing offsets.

Thursday, April 14: Full back end due.

Extras

If your back end is done early, I suggest getting a head start on the next project phase: the optimizer. If you
are unhappy with the inefficient machine code generated, you could begin work on a variety of improvements
to instruction selection or register allocation. Talk to me.

5


