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This week’s goal is to explore internal data structures used by a compiler to organize and manipulate a
source program. These data structures are the core of a compiler, and developing a good set of programming
abstractions is essential for managing implementation complexity. We focus on building abstract syntax
trees (ASTs) during parsing, developing a general structure for symbols information, and briefly exploring
other intermediate representations.

Readings

Copies of Engineering a Compiler (EC) are available in the white bookshelf outside my door. Some parts
are pretty light and fill in background material; others are more directly related to the problems below.

• LR Parser Generators and Attribute Grammars.

– Java CUP manual, mainly sections 1-2, 6. http://www2.cs.tum.edu/projects/cup/docs.php

– Skim Java CUP examples: Calculator and MiniJava with manual user actions. Don’t worry about
details of the AST representation. http://www2.cs.tum.edu/projects/cup/examples.php

– EC 4.1 – 4.3. Skim for basic background ideas (recurring themes for us).

• Abstract Syntax Trees, Intermediate Representations.

– EC 5.1 – 5.3.

• Scoping and Symbol Tables.

– EC 5.5

• Scala Case Classes and Pattern Matching.

– See Scala resources on the tools page: https://cs.wellesley.edu/~cs301/tools.html

Exercises

1. This question requires some programming. You may work with a partner if you wish. We will convert
the Tiny compiler to use a generated parser using Java CUP instead of the handwritten parser we
developed in the first week of classes.

The problem explores how CUP and other LR parser generators enable embedding semantic actions
in a grammar definition. Each production in a grammar can be associated with a semantic action:

A ::= body 1 {: semantic-action 1 :}
| body 2 {: semantic-action 2 :}

. . .
| body k {: semantic-action k :}
;
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The semantic action i, which is just Java code (if using CUP), is executed whenever the parser reduces
the body of production i to the non-terminal A. The parser also associates an attribute value with
each terminal and non-terminal on the parsing stack. The name RESULT refers to the attribute for the
head (i.e., A), and we can give names to the attributes for the symbols in the body of the production,
as seen below with names e and val. (This attribute grammar implements an interpreter!)

terminal Integer NUM;

terminal PLUS;

nonterminal Integer E;

precedence left PLUS;

E ::= E:e1 PLUS E:e2 {: RESULT = e1 + e2; :}

| NUM:val {: RESULT = val; :}

;

In essence, the parser stack contains 〈Symbol,Attribute〉 tuples. It uses the symbols to parse and
mantains the attributes for you to use.

For each terminal and non-terminal, we declare the attribute type, if any. The scanner must create
the attribute values for terminals, as we did when building the IC lexer. The semantic actions in the
parser synthesize the attribute values for non-terminals during parsing.

Modern compiler implementations have shifted away from using semantic actions to perform any sort
of type checking or code generation inside a compiler. Instead, we simply use the semantic actions to
build an abstract syntax tree, and we use subsequent tree operations to perform analysis. Thus, we
could build an AST for the above example as follows:

terminal Integer NUM;

terminal PLUS;

nonterminal Expr E;

precedence left PLUS;

E ::= E:e1 PLUS E:e2 {: RESULT = new Plus(e1, e2); :}

| NUM:val {: RESULT = new Num(val); :}

;

where we have the following AST node definitions (given in Scala):

abstract class Expr

case class Plus(left: Expr, right: Expr) extends Expr

case class Num(value: Int) extends Expr

(a) Get code for this exercise, which comes an archive of a single Eclipse/Scala IDE project

i. Download https://cs.wellesley.edu/~cs301/labs/cs301-tiny3.tar.gz.

ii. Extract it (double-click or tar xfz cs301-tiny3.tar.gz) in a Scala IDE workspace.

iii. cd into the project directory and run make.

iv. In Scala IDE, create a new Scala Project, giving tiny3 as the name so Scala IDE finds and
imports the project in your workspace.

v. After importing, click on the project in the Project Explorer and then select Project→ Clean
followed by File → Refresh to ensure the project builds correctly.

vi. cd into the project directory and run make dump to see the JavaCUP generated state machine.
This may be useful later if you have conflicts or JavaCup errors.
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(b) Extend the CUP grammar given in src/tiny/tiny.cup to implement the grammar for Tiny,
with one change: relax the syntax rules to make parentheses optional in expressions (instead of
required) and make un-parenthesized addition expressions left-associative.

We provide a JFlex-based lexer (which also allows arbitrary or no whitespace between tokens),
a definition of all terminals and non-terminals, and the grammar rules for high-level program
structure. Here is the core of the provided CUP grammar:

/* Terminals */

terminal PRINT, INPUT, PLUS, EQ, SEMI, LPAREN, RPAREN;

terminal String ID;

terminal Integer NUM;

/* Nonterminals */

nonterminal Program Program;

nonterminal Stmt Stmt;

nonterminal List<Stmt> StmtList;

nonterminal Expr Expr;

/* The grammar (first listed production determines start symbol) */

Program ::= StmtList:list {: RESULT = new Program(list); :}

;

StmtList ::= {: RESULT = ParserUtil.empty(); :}

| StmtList:l Stmt:s SEMI {: RESULT = ParserUtil.append(l, s); :}

;

You must implement grammar rules for statements and expressions, along with appropriate se-
mantic actions to build a valid Tiny AST using the same AST structures we developed earlier.
Implement left-associativity for addition expressions without rewriting the grammar in any way.
Instead, use CUP’s precedence directive.

(c) Describe the sequence of actions performed by the parser when parsing:

x = 1 + (input + 7);

print x;

Be sure to describe the attributes for each symbol on the parsing stack each time a production
is reduced, and draw the final attribute created for the Program. Running your working version
can help you with the latter:

scala -cp bin:tools/java-cup-11a.jar tiny.Compiler some-program.tiny

You need not build the parsing table, etc. Simply describe the actions at a high level (i.e., “shift
NUM onto stack, with attribute value . . .”; “reduce . . . to . . ., popping off attribute values . . .
and pushing attribute value . . .”; and so on). If you are curious about the parsing table, run
make dump and examine the output to see the parsing table CUP has generated.

(d) The grammar above uses left recursion in the StmtList non-terminal. Lists like this could also
be written with right recursion, as in:

StmtList ::= | Stmt SEMI StmtList ;

Change the StmtList rule in tiny.cup to be right-recursive. Update the semantic action to
produce the same result as before. (Inspect ParserUtil.scala for some methods you can call in
CUP to manipulate Scala lists, which we use to represent statement lists in program AST nodes.)

(e) It is often considered bad form to use right recursion in grammars for LR parser generators like
CUP, if it can be avoided. Why do you think left recursion is preferable to right recursion? (Hint:
think about how a 100000-line program would be parsed.)

Bring a paper copy of your tiny.cup grammar to our meetings so we can discuss your grammar.
You do not need to submit anything electronically.
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2. [Adapted from Cooper and Torczon]

• Show how the code fragment

if (c[i] != 0) {

a[i] = b[i] / c[i];

} else {

a[i] = b[i];

}

println(a[i]);

might be represented in an abstract syntax tree, in a control flow graph, and in quadruples (or
three-address code — a brief overview of TAC follows at the end of this document).

• Discuss the advantages of each representation.

• For what applications would one representation be preferable to the others?

3. [Adapted from Cooper and Torczon] You are writing a compiler for a lexically-scoped programming
language. Consider the following source program:

1 procedure main

2 integer a,b,c;

3 procedure f1(integer w, integer x)

4 integer a;

5 call f2(w,x);

6 end;

7 procedure f2(integer y, integer z)

8 integer a;

9 procedure f3(integer m, integer n)

10 integer b;

11 c = a * b * m * n;

12 end;

13 call f3(c,z);

14 end;

15 ...

16 call f1(a,b);

17 end;

As in ML, Pascal, Scheme, or Racket, the scope of a nested procedure declaration includes all declara-
tions from the enclosing declarations.

(a) Draw the symbol table and its contents at line 11.

(b) What actions are required for symbol table management when the semantic analyzer enters a new
procedure and when it exits a procedure?

(c) The compiler must store information in the IR version of the program that allows it to easily
recover the relevant details about each name. In general, what are some of the relevant details for
the variable and procedure names that you will need to perform semantic analysis, optimization,
and code generation? What issues must you consider when designing the data structures to store
that information in the compiler?

(d) This part explores how to extend your symbol table scheme to handle the with statement from
Pascal. From the Pascal documentation:

The with statement serves to access the elements of a record or object or class, without
having to specify the name of the each time. The syntax for a with statement is:

with variable-reference do

statement
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The variable reference must be a variable of a record, object or class type. In the with

statement, any variable reference, or method reference is checked to see if it is a field or
method of the record or object or class. If so, then that field is accessed, or that method
is called. Given the declaration:

Type Passenger = Record

Name : String[30];

Flight : String[10];

end;

Var TheCustomer : Passenger;

The following statements are completely equivalent:

TheCustomer.Name := ’Michael’;

TheCustomer.Flight := ’PS901’;

and

With TheCustomer do

begin

Name := ’Michael’;

Flight := ’PS901’;

end;

In essence, the with statement is a shorthand to access a bunch of fields from a compound
structure without fully qualifying each name. Discuss in a few sentences how you would augment
the symbol table scheme you followed in parts (a) and (b) to support with. In particular, what
information would you store about each record type definition, and how would you modify the
symbol table when the semantic analyzer enters and exits a with statement? What information
do you attach to any symbol added to the table during these operations?

4. Begin designing ASTs for IC. You do not need to write any code (that will be part of the project – feel
free to start as well, of course), but do think about how to organize your ASTs. What kind of nodes
will you have? Will any similar nodes share common parts? How closely will your AST organization
mirror the grammar? How will it differ? We will do a lot of separate recursive analyses on ASTs,
implementing different behavior for each type of AST node. How will Scala case classes help with this?
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TAC

This page summarizes a simple TAC intermediate language. There are many choices as to the exact instruc-
tions to include in such a language, and you will probably want to modify and extend this variant when we
translate IC programs into TAC.

Instruction Forms

• Arithmetic and Logic Instructions.

The basic instruction forms are:

a = b OP c a = OP b

where OP can be

an arithmetic operator: ADD, SUB, DIV, MUL
a logic operator: AND, OR, XOR
a comparison operator: EQ, NEQ, LE, LEQ, GE, GEQ
a unary operator: MINUS, NEG

• Data Movement Instructions.

Copy: a = b

Load/store: a = *b *a = b

Array load/store: a = b[i] a[i] = b

Field load/store: a = b.f a.f = b

• Branch Instructions.

Label: label L

Unconditional jump: jump L

Conditional jump: cjump a L (jump to L if a is true)

• Function Call Instructions.

Call with no result: call f(a1, ..., an)

Call with result: a = call f(a1, ..., an)

(Note: there is no explicit TAC representation for parameter passing, stack frame setup, etc.)
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