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This week we wrap up lexical analysis and begin syntax analysis:

Readings

Exercises

1.

We apply our foundations for regular expressions and finite automata to see how a lexical analyzer
can be constructed automatically from a specification of token patterns (exercises 1 and 2). This
prepares us to start the semester-long project in the following labs by exploring our source language
and implementing a lexical analyzer for it.

We also consider the next phase of the compiler: syntax analysis. The reading on this topic covers
grammars and our first general parsing technique. The problems explore properties of grammars that
make them suitable for describing programming languages and automatic parsing. Next week, we
continue with more parsing techniques.

Dragon 3.8, 3.9.6, 3.10
Alternative: EC 2.4.4-2.4.5, 2.5.1

Refer to last week’s readings (including Russ Cox’s article) for discussion of the conversion of regular
expression to NFA to DFA (Thompson’s construction and subset construction).

Dragon 4.1 — 4.4 (focus on 4.1.1-4.1.2, 4.2-4.2.5, 4.2.7, 4.3-4.3.4, 4.4-4.4.4)
Alternative: EC 3.1 — 3.3

Optional Extras:

— If you are curious about the general algorithm behind the ad hoc method we used to transform
our C-comment DFA into a regular expression, see Kleene’s construction in EC 2.6.1.

Minimize the states of the following DFA. Label each state in the minimized DFA with the set of states
from the original DFA to which it corresponds.




. Consider the following lexical analysis specification:

(aba)+ { return Toki; }
(a(b)+a) { return Tok2; }
(alb) { return Tok3; }

In case of tokens with the same length, the token whose pattern occurs first in the above list is returned.

(a)
(b)

()

Build an NFA that accepts strings matching one of the above three patterns using Thompson’s
construction.

Transform your NFA into a DFA using the subset construction. Label the DFA states with the
set of NFA states to which they correspond. Indicate the final/accept states in the DFA and label
each of these states with the (unique) token being returned in that state.

Show the steps in the functioning of the lexer for the input string abaabbaba. Indicate what
tokens the lexer returns for successive calls to getToken(). For each of these calls indicate the
DFA states being traversed in the automaton.

. Dragon 4.2.1

. Dragon 4.2.3 (a) — (e)

. Dragon 4.3.1

. Consider the following grammar:

(a)
(b)

S — aSbS | bSaS | e

Show that the grammar is ambiguous by constructing two different rightmost derivations for some
string.

Construct the corresponding parse trees for this string.

. Consider the following grammar:

S — BC(Cz
B — xB|D
C — uvi|u
D — yD]e

Is this grammar LL(1)? If it is not, explain why, and then modify the grammar to be LL(1) before
proceeding.

Compute the FIRST and FOLLOW sets for the (possibly modified) grammar.

Construct the LL(1) parsing table. NOTE: There is a typo in the Dragon book in the
description of how to construct the parsing table. On page 224, step 1 of Algorithm
4.31 should refer to FIRST(c), and not FIRST(A). This has been fixed in some printings
(international paperback?) but not all.

Show the steps taken to parse xxyuz with your table. (Use Fig. 4.21 as an example of how to
show the parser’s progress.)



8. Consider the following grammar for statements:

Stmt — if E then Stmt StmtTail
| while E Stmt
| { List }
| S

StmitTail — else Stmt

| €
List — Stmt ListTail

ListTail — ; List

| €

Unlike Java (and like ML), semicolons separate consecutive statements. You can assume E and S are
terminals that represent other expression and statement forms that we do not currently care about.
If we resolve the typical conflict regarding expansion of the optional else part of an if statement by
preferring to consume an else from the input whenever we see one, we can build a predictive parser
for this grammar.

(a) Build the LL(1) predictive parser table for this grammar.

(b) Using Figure 4.21 in the Dragon book as a model, show the steps taken by your parser on input
if E then S else while E { S }

(c) Optional: Use the techniques outlined in Dragon 4.4.5 to add error-correcting rules to your table.

(d) Optional: Describe the behavior of your parser on the following two inputs:

e if E then S ; if E then S }
e while E { S ; if ES ; }



