
CS 301 Spring 2016
Meetings April 25

Runtime Systems

Plan

Lexical
Analysis

Syntax
Analysis

Semantic
Analysis

Intermediate
Code

Generation

Machine-
Independent
Optimization

Code
Generation

Source
Program

Target
Program

This week, we will read and discuss a variety of papers about runtime systems: code and systems that
provide services to a program as it runs, but are neither part of the source code of that program nor the
operating system of the machine. We will explore garbage collection, just-in-time compilation, adaptive
optimization, the general idea of language virtual machines, and more. As you read this week, focus on big
ideas and perspective. Do not get too caught up in details. I do not expect you to have a deep grasp of
each paper. They are listed from more general to more specific (extras follow the exercises if you are really
curious). Aim to get some background on GC and language VMs with the first overview papers in those
sections. Pick at least one or two of the research papers to check out in some detail, but do try to skim at
least the intro from all to get an idea of their goals.

Readings

URLs below should be clickable.

• Any optimization topics of interest from last week’s reading.

• GC:

– Paul Wilson, Uniprocessor Garbage Collection Techniques.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.47.2438&rep=rep1&type=pdf

Focus on Sections 1–2, 3–3.2, 4. (You read this in 251 if you took it with me.)

• EC 8.7.1: Inlining

• JITs, Dynamic Optimization, VMs:

– Matthew Arnold, et al.. A Survey of Adaptive Optimization in Virtual Machines. In Proceedings
of the IEEE Vol. 93 Issue 2, February 2005.
http://www.ittc.ku.edu/~kulkarni/teaching/archieve/EECS800-Spring-2008/survey_adaptive_

optimization.pdf

An overview of techniques for optimizing programs as they run. Read/skim for back-
ground and perspective, not specific system details.

– Andreas Gal, et al., Trace-Based Just-in-Time Type Specialization for Dynamic Languages. ACM
Conference on Programming Language Design and Implementation (PLDI), 2009.
http://cdn.mozilla.net/pdfjs/tracemonkey.pdf

Focus on Sections 1–3; skim the rest. Much interesting detail about compiling very
dynamic (dynamically typed) languages like JavaScript. EC 12.4 covers similar ideas
for static compilation. Note: Firefox has since abandoned TraceMonkey, since other
newer optimizations (e.g., type inference) made it unneeded.1 At the time, it was a huge
and early step in taking JavaScript performance from terrible (simple interpreters) to
surprisingly good (smart JITs) over the past 10 years.

1https://blog.mozilla.org/nnethercote/2011/11/01/spidermonkey-is-on-a-diet/

1

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.47.2438&rep=rep1&type=pdf
http://www.ittc.ku.edu/~kulkarni/teaching/archieve/EECS800-Spring-2008/survey_adaptive_optimization.pdf
http://www.ittc.ku.edu/~kulkarni/teaching/archieve/EECS800-Spring-2008/survey_adaptive_optimization.pdf
http://cdn.mozilla.net/pdfjs/tracemonkey.pdf
https://blog.mozilla.org/nnethercote/2011/11/01/spidermonkey-is-on-a-diet/


– Thomas Würthinger, et al., One VM to rule them all. In Onward!, 2013.

Focus on Sections 1–3; skim the rest if interested. Could we build a VM for everything
(dynamic) and make languages easily interoperable? Here’s one attempt.
http://lafo.ssw.uni-linz.ac.at/papers/2013_Onward_OneVMToRuleThemAll.pdf

These slides might give some good background/context:
http://janvitek.org/events/PBD13/slides/MarioWolczko.pdf

http://www.oracle.com/technetwork/oracle-labs/program-languages/overview/index.

html

• Dynamic Analysis:

– Michael D. Bond, et al., Tracking Bad Apples: Reporting the Origin of Null and Undefined Value
Errors. International Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), 2007.
http://web.cse.ohio-state.edu/~mikebond/origin-tracking-oopsla-2007.pdf

Focus on Sections 1–2 for the key idea; skim the rest, which is also interesting. This
paper describes a kind of dynamic analysis, an analysis of the true run-time behavior of
programs, to track where problematic nulls originate.

Exercises

1. Let’s talk projects at the end of the meeting. These papers might give you some interesting ideas and
I will pitch some others to you if you do not already have ideas.

2. Be prepared to discuss the general ideas behind the papers. The questions below will help target your
reading.

3. Garbage collectors (familiar if you have taken 251 with me):

• What is a limitation that applies to reference-counting, mark-sweep, and copying garbage collec-
tion?

• What is a problem in both reference-counting and mark-sweep garbage collection that is addressed
by copying collection?

• What is one limitation of reference-counting that is not a problem for mark-sweep garbage col-
lection?

• What is the point of incremental garbage collection?

• What is the key expected behavior of programs for which generational collection is optimized?
(This is also called the generational hypothesis.) How does generational collection optimizes for
this behavior?

4. JITs, Dynamic Compilation, VMs, Case Studies:

• What are the upsides and downside of optimizing code at run time? Think about this at some
length. Can run-time optimization clear some of the limitations of compile-time optimization? Is it
it worth the cost? Consider the ideas of profile-guided optimization, feedback-guided optimization,
adaptive optimization, etc. (All closely related.)

• Identify several opportunites for run-time optimization for a language like Java. (First, think
back to a paper we read before spring break on Polymorphic Inline Caches.)

• How do optimization opportunities differ based on properties of the language we consider? Pick
a few languages familiar to you, e.g., C, Java, SML, Javascript, Python, Racket.

• Why is tracing potentially useful for a dynamically typed language like JavaScript? Do you expect
it to be useful in statically type languages? Why do you suppose it was eventually abandoned in
Firefox?

2

http://lafo.ssw.uni-linz.ac.at/papers/2013_Onward_OneVMToRuleThemAll.pdf
http://janvitek.org/events/PBD13/slides/MarioWolczko.pdf
http://www.oracle.com/technetwork/oracle-labs/program-languages/overview/index.html
http://www.oracle.com/technetwork/oracle-labs/program-languages/overview/index.html
http://web.cse.ohio-state.edu/~mikebond/origin-tracking-oopsla-2007.pdf


• What is the goal of One VM to rule them all project? What is the key to their design/approach
that is motivated by this goal?

5. Extended run-time checking:

• What do you think of the Null Origin Tracking paper? (Bond, et al.)

• What other properties could you imagine checking at run time?

• How can a run-time analysis like this be more precise than a static (compile-time analysis)?

Still curious?

Here are some optional extras:

• JavaScript implementation:

– Firefox’s SpiderMonkey JavaScript Engine:
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey/Internals

– Chromium’s V8 JavaScript Engine: https://developers.google.com/v8/under_the_hood

• Other:

– Chris Lattner and Vikram Adve, LLVM: A Compilation Framework for Lifelong Program Analysis
& Transformation. CGO 2004.
http://llvm.org/pubs/2004-01-30-CGO-LLVM.pdf

LLVM has become widely used over the past several years as a general compiler mid-
dle/backend to generate native machine code. It had a C, etc., focus early on, but has
generalized over time. It powers everything Apple (e.g., Swift) these days.

– Thomas Kotzmann, et al. Design of the Java HotSpotTM Client Compiler for Java 6. ACM
Transactions on Architecture and Compiler Opitmization (TACO), Vol. 5, No. 1, May 2008.
https://web.stanford.edu/class/cs343/resources/java-hotspot.pdf

Overview of the design of the standard JVM implementation as of a handful of years ago.
Some things have changed since, but this is still fairly representative.

• GC:

– Richard Jones, et al., The Garbage Collection Handbook: The Art of Automatic Memory Man-
agement. CRC Press, 2012. (I have a copy; ask me.)

– David Detlefs, et al., Garbage-First Garbage Collection. International Symposium on Memory
Management (ISMM), 2004.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.63.6386&rep=rep1&type=pdf

Deployed in HotSpot JVM, along with Concurrent Mark-Sweep and others.

– HotSpot VM GC Tuning Guide:
https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/index.html

– Stephen M. Blackburn and Kathryn S. McKinley, Immix: A Mark-Region Garbage Collector with
Space Efficiency, Fast Collection, and Mutator Performance. ACM Conference on Programming
Language Design and Implementation (PLDI), 2008.
http://users.cecs.anu.edu.au/~steveb/downloads/pdf/immix-pldi-2008.pdf

More recent algorithm, deployed in Jikes RVM.

– Steve Fink and Robert Nyman, Generational Garbage Collection in Firefox.
https://hacks.mozilla.org/2014/09/generational-garbage-collection-in-firefox/

3

https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey/Internals
https://developers.google.com/v8/under_the_hood
http://llvm.org/pubs/2004-01-30-CGO-LLVM.pdf
https://web.stanford.edu/class/cs343/resources/java-hotspot.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.63.6386&rep=rep1&type=pdf
https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/index.html
http://users.cecs.anu.edu.au/~steveb/downloads/pdf/immix-pldi-2008.pdf
https://hacks.mozilla.org/2014/09/generational-garbage-collection-in-firefox/

