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1 Overview

For the CS 301 implementation project, you will build a compiler for Roost, a statically typed language
invented for this course. The core Roost language provides functions, primitive data types, simple compound
data structures, scoping, and basic control flow. Roost takes some syntactic cues from Rust. A set of
extensions to the core includes features partly familiar from other languages such as Java, Scala, ML,
and countless others. The full Roost language is simple enough that its grammar fits on one page, yet
sophisticated enough to require many interesting considerations in a compiler.

1.1 Core Language Highlights

The core Roost language requires:

• Sound static typing: The core Roost language has a sound static type system with: builtin types for
integer, Boolean, and string values; compound structure types; array types; and function types.

• Top-level functions as values: The core Roost language supports basic higher order functions, allowing
top-level functions to be passed, stored, and returned as values. The core language lacks nested function
definitions and closures.

• Dynamic allocation and garbage collection: The core Roost language supports dynamic heap allocation
of objects, strings, and arrays. Such structures are always allocated on the heap and manipulated by
reference. The language allows for garbage collection for automatic de-allocation of heap space.

• Run-time checks: Roost supports run-time checks for null references, array bounds violations, and
negative array size allocations.

1.2 Standard Extensions

The implementation project requires implementing at least one, preferably two, or optionally all three standard
extensions to the core Roost language:

• Parametric type polymorphism: The full Roost language extends the static type system with para-
metric polymorphism, similar to Java or Scala generic types.

• Subtype polymorphism with dynamic dispatch: The full Roost language supports structure methods
for objects with subtype polymorphism via signature types, similar to Java interfaces, using dynamic
dispatch for method calls. Roost supports reuse via composition, rather than extension; it does not
support inheritance, overriding, or overloading.

• First-class function closures : The full Roost language supports functions as values, higher order
functions, and first-class function closures for nested function definitions.
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1.3 Status

This is a living document that will grow to include more detail as we progress into the next stage of the project.
Changes to the language are not expected, but improvements to this document are. Features associated with
standard extensions are highlighted in the colors shown above.

1.4 Acknowledgments

This document, aspects of the Roost language, and related assignments were adapted from assignment
materials developed at Cornell University and Williams College.

2 Lexical Considerations

2.1 Identifiers

Identifiers (names) and keywords are case-sensitive. Identifiers must begin with a letter. Following the initial
letter may be any sequence of letters characters, digits, or the underscore character (_). Uppercase and
lowercase letters are both considered are distinguished, so x and X are different identifiers.

2.2 Keywords

The following are the keywords used in the language and cannot be used as identifiers:

fn i64 bool str unit struct impl field method sig with let in if else while return
break continue new length self true false null Roost

The following keywords are reserved for potential future use in the language:

class extends interface implements data datatype

Other lexical tokens are shown in the full syntax of Roost in Figure 1.

2.3 Tokenization

Whitespace consists of a sequence of one or more space, tab, or newline characters. Whitespace may appear
between any tokens. Keywords and identifiers must be separated by whitespace or a token that is neither a
keyword or an identifier. For instance, elsey represents a single identifier, not the keyword else followed by
the identifier y.

2.4 Comments

C/Java-style comments are supported. A comment beginning with the characters // indicates that the
remainder of the line is a comment. A block comment is a sequence of characters that begins with /*, followed
by any characters, including newline, up to the matching end sequence */. An unclosed comment is a lexical
error. Roost also supports nesting ML-style comments, delineated by (* and *). For example:

(* This is a single (* comment that does not end here -> *)
It (* ends (* after *) the matching star-rparen *) right here -> *)

2.5 Literals

Integer literals may start with an optional negation sign -, followed a sequence of digits. Non-zero integer
literals must not have leading zeroes. Integers have 64-bit signed values in the range −263 through 263 − 1,
inclusive.

String literals are sequences of characters delimited by double quotes. String characters can be: single
printable ASCII characters (ASCII codes between decimal 32 and 126) except double-quote (") and backslash
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(\); or the escape sequences \" to denote quote, \\ to denote backslash, \t to denote tab, and \n to denote
newline. No other characters or character sequences can occur in a string. Unclosed strings are lexical errors.

The keywords true and false are Boolean literals. The null reference literal is null. The unit-type
literal is actually a pair of tokens, ( followed by ). The unit type is similar to void in C or Java, except
that there is a single value of type unit.

3 Top-Level Program Elements

A program consists of a sequence of function, structure, and signature definitions, including exactly one
main function definition for the program entrypoint, of the following form:

fn main(args : str[]) -> unit { /* body of main function */ }

Roost functions are declared with fn keyword. The function definition lists the types of parameters and
return results and provides a body expression to be evaluated when the function is called.

The main function takes an array of strings (command-line arguments) as its single argument and returns
the value of type unit. Roost structures are program-defined compound types. Each structure (struct)
definition declares the set of named data fields (field) carried by each object instance of that structure type.

The parametric type system extension (generic types) supports type parameters on function definitions

and structure definitions. The subtyping extension supports methods (method) in structure definitions,
making them similar to classes in languages like Java or Scala (but without inheritance), and signature types
for structures, analogous to Java interfaces. Each structure definition may optionally implement (impl) one
or more signatures. Each signature (sig) declares required method types and may optionally require other
signatures (with).

4 Variables

Program storage locations may be local variables or parameters of methods (allocated in the stack or registers),
fields of objects (allocated in the heap), or cells of arrays (also allocated in the heap). Variables of type
int and bool hold integer and boolean values, respectively. Variables of other types hold references to
heap-allocated items (i.e., strings, arrays, or objects).

The program does not initialize variables by default when they are declared. Instead, the static checks
in the compiler verify that each variable is guaranteed to have a value assigned before being used. Object
fields and array elements are initialized with default values (0 for integers, false for booleans, and null for
references) when such structures are dynamically created.

The language allows variables to be initialized when declared in a let block. The initialization expression
can refer to variables in enclosing scopes, parameters of the enclosing function or method, or any names
introduced by preceding bindings in the same let block. In other words, each new binding introduces its
own nested scope. The function closure extension supports local function definitions in let blocks as well.

5 Data Types

5.1 Scalar Types

Booleans are reprsented by the type bool and the literals true and false. The integer type i64 is a 64-bit
two’s-complement integer. Arithmetic operations on integers that overflow yield modular results. The unit
type has a single value, ().

5.2 Strings

For string references, the language uses a primitive type str (unlike Java, where String is a class). Strings
are allocated in the heap and are immutable, meaning that the program cannot modify their contents. The
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language allows only the following operations on string values: assign string references (including null);
concatenate strings with the + operator; and test for string reference (not content) equality using == and !=.
Builtin functions convert integers to strings, print, etc.

5.3 Arrays

The language supports arrays with arbitrary element types. If T is a type , then T[] is the type for an array
with elements of type T. In particular, array elements can be arrays themselves, allowing programmers to
build multidimensional arrays. For instance, the type T[][] describes a two-dimensional array constructed
as an array of array references of type T[].

Arrays are created dynamically using the new construct: new T[n] allocates an array of type T with n
elements and initializes the elements with their default values. The expression new T[n] yields a reference to
the newly created array. Arrays of size n are indexed from 0 to n− 1 and the familiar bracket notation is used
to access array elements. If the expression a is a reference to an array of length n, then a.length evaluates
to n, and a[i] evaluates to the (i + 1) element in the array. For each array access a[i], the program checks
at run-time that a is not null and that the access is within bounds: 0 ≤ i < n. Violations will terminate the
program with an error message.

5.4 Structure Types (struct) and Objects

Roost structure types are analogous to Java’s class types, with some differences. Structure type definitions
are collections of field definitions that define the contents and type of individual structure instances. In the
core Roost language, structure type definitions are of the form:

struct A {
field x1: T1
/* ... */
field xn: Tn

}

Field definitions, such as field spots : i64, declare the name and type of fields carried by each instance
of the containing structure type. Roost fields are similar to Java instance variables.

A fresh object of a structure type is constructed by an expression of the form: new A(). This expression
allocates and initializes space for the object on the heap and yields a reference to the object. Fields are
initialized to hold their zero-most value: 0 for i64, false for bool, () for unit, and null for all reference
types. Object fields are accessed using the . symbol. The expression o.f denotes the field f of object o.

Object references have structure types: each definition struct A introduces a structure type A. Structure
types can then be used in declarations for local variables, parameters, or fields. For example, field obj :
A declares a structure field obj of type A, that is, a reference to an object of structure type A.

A structure name A can be used as the type of an object reference anywhere in the program. In particular,
it can appear in the body of a struct A declaration itself, or even before that, as in the following example.
This admits recursive and mutually recursive structures, such as those below:

struct List {
field elem: i64
field next: List

}
struct Node {
field data: str
field edge: Edge[]

}
struct Edge {
field label: i64
field dest: Node

}
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The parametric type extension supports type parameters on structure definitions for use in declarations

within the structure definition body. The subtyping extension supports methods in structure definitions
and introduces signature types, analogous to Java interfaces.

6 Function Calls

Evaluation of a function call consists of the following steps: passing the parameter values from the caller to
the callee, executing the body of the callee, and returning the control and the result value (if any) to the
caller. Each time a function is called, the program evaluates the expressions representing the arguments and
then binds the resulting values to the corresponding parameters of the function. Object, array, or string
arguments are passed as references. Arguments are evaluated left to right.

After binding parameters to values, the program executes the body of the function that was called. When
evaluation reaches a return expression or the end of the body, the program transfers control back to the
caller. If the return expression has an expression argument or the body ends with an expression, that
expression’s evaluated value is returned to the caller as the result.

Statically, at each call site, the number and types of provided arguments must match the parameters of
the function or declaration and the declared result type must match the expected type in the callee. Also,
the return type from the declaration of a function must match the return or result expressions in the body.
If a function body has no result expression, it implicitly returns the value of type unit; this must match its
declared result type. Otherwise, the result expression – and the subexpression of any return in the body –
must be compatible with the declared result type of the function.

7 Scoping Rules

For each program, there is a tree hierarchy of scopes consisting of: the top-level scope; the function scopes
or the structure scopes and their method scopes in the subtyping extension ; and the local scopes for let
blocks within each function or method. The top-level scope consists of the names of all functions, structures,
and signatures defined in the program. The scope of a structure is the set of fields and methods of that
structure. The scope of a function or method consists of the parameters. Finally, a let scope contains all
of the variables defined between let and in within the expression. Each definition in the let expression
introduces its own scope, allowing later definitions in the same let expression to use – or shadow – the
names introduces by earlier definitions. The scope of the let body expression is the scope containing all
the definitions introduced with the let. When resolving an identifier at a certain point in the program, the
enclosing scopes are searched for that identifier after the local scope.

Identifiers can be used ony if they are defined in one of the enclosing scopes. More precisely, variables
can be used (read or written) only after they are defined in one of the enclosing let block scopes. Structure
elements can be used in expressions of the form expr.f when the object target expression expr has structure
type T and the scope of T contains those elements. This means that all structure elements are publicly visible
and can be accessed from any scope, including outside the declaring structure definition. Finally, structure
names can be used in types of parameter, variable, and field declarations anywhere, provided they are defined
in the program, either before or after the point of reference. Similarly, top-level functions may be referenced
in any function body, regardless of order of definition.

Identifiers (names of functions, structures, signatures, fields, methods, and variables) cannot be defined
multiple times in the same scope. Otherwise, identifiers can be defined multiple times in different, possibly
nested, scopes. For variables, inner scopes shadow outer scopes. If variables with the same name occur in
nested scopes, then each occurrence of that variable name refers to the variable in the innermost scope that
defines it and contains the reference.

8 Expressions

Roost is an expression-focused language; it emphasizes evaluating for result values over evaluating for side
effects. Roost still supports side effects, but structures them under expressions. All code structures that
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appear in function bodies (including the entire body itself) produce a result value when evaluated, even if
that value is simply unit typed value.

8.1 Block Expressions

Roost organizes let blocks (for variable declarations and scoping) and control-flow operations (if, while)
using block expressions. All blocks (code sequences in functions or methods delineated by curly braces { })
any sequence of simply expressions (with semicolons for sequencing) or block expressions, followed by an
optional final result block or simple expression (with no semicolon). For example, the following function
returns 7 when called:

fn f() -> i64 {
let x: i64 = 4 in {
x = x + 1; // Stores 5 in x. The expression result is (), but is discarded by ’;’
x // This is the result of the let expression.

} + 2 // This addition expression gives the return result of the function
} // by adding the result of the let expression to 2.

8.2 Control-Flow Expressions

Roost provides control-flow operations if and while as block expressions. The last expression in a block
expression determines the result value of the entire block expression. For example, this function prints "odd"
for odd numbers and "even" for even number arguments:

fn evenodd(x: i64) -> unit {
Roost.println(
if (x % 2 == 0) { "even" }
else { "odd" }

)
}

The types of the expressions that form the result of the then and else branches must agree. When used
without the optional else block, an if expression must yield type unit in the then branch.

The while expression executes its body iteratively. At each iteration, it evaluates the test condition. If
the condition is false, then it finishes the execution of the loop; otherwise it executes the loop body and
continues with the next iteration.

The while loop expression must have a unit typed body expression; it yields the unit typed value as its
result. The break expression immediately terminates the loop without completing the current iteration; the
continue expression immediately moves control to the loop test without completing the current iteration.
The break and continue expressions may occur only within the body of a while loop. These loop control
expressions always refer to the innermost loop.

The return e expression evaluates the expression e and then immediately terminates evaluation of the
containing function or method body, providing the result of e as the result value of the call.

8.3 Assignment

Each assignment expression l = e updates the location represented by l with the value of expression e.
The updated location l can be a local variable, a parameter, a field, or an array element. The type of the
updated location must be compatible with the type of the evaluated expression. For integers and booleans,
the assignment copies the integer or boolean value. For string, array, or object types, the assignment copies
the reference. The result of the assignment expression itself is of type unit.

8.4 Simple Expressions

Simpler expressions include:
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Priority Operator Description Associativity
1 [] () array index, method call left

. field/method access
2 - ! ˜ unary minus, logical negation, bitwise complement right
3 * / % multiplication, division, remainder left
4 + - addition, subtraction left
5 << >> >>> shift left
6 < <= > >= relational operators left
7 == != equality comparison left
8 & bitwise and left
9 ˆ bitwise exclusive or left
10 | bitwise or left
11 && short-circuit and left
12 || short-circuit or left
13 = assignment right

Table 1: Precedence rules for Roost operators. Priority 1 is the highest (tightest binding).

• locations: local variables, parameters, fields, or array elements;

• calls to methods with non-void return types;

• new structure/object or array instances, created with new T() or new T [e];

• the array length expression e.length;

• unary or binary expressions;

• integer, string, unit, and null literals; and

• any expression enclosed in parentheses, to make operator precedence explicit.

8.5 Operators

Unary and binary operators include the following:

• Arithmetic operators: addition +, subtraction -, multiplication *, division /, and modulo %. The
operands must both be of type i64. Division by zero and modulus of zero are dynamically checked,
and cause program termination.

• Bitwise operators: “and” &, “or” |, exclusive “or” ^. The operands must both be of type i64.

• Bit shift operators: shift left <<, arithmetic shift right >>, logical shift right >>>. The operands must
both be of type i64.

• String concatenation with +. The operands must both be of type str.

• Relational comparison operators: less than <, less or equal than <=, greater than >, and greater or equal
then >=. Their operands must be integers.

• Equality comparison operators: equal == or different !=. The operands must have the same type. For
integer and Boolean types, operand values are compared. For reference types, references are compared.

• Conditional operators: short-circuit “and”, &&, and short-circuit “or”, ||. If the first operand of &&
evaluates to false, its second operand is not evaluated. Similarly, if the first operand of || evaluates to
true, its second operand is not evaluated. The operands must be of type bool.
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• Unary operators: integer negation - for integers, logical negation ! for booleans, bitwise complement ~
for integers.

The operator precedence and associativity is defined by Table 1.

9 Standard Extensions to the Core Language

9.1 Parametric Type System

The Roost type system supports parametric polymorphic types.

9.1.1 Type Parameters on Structures

This typing extension supports type parameters on structure definitions and allows types within the structure
definition to reference these type parameters in type annotations. For example:

struct ListNode<T> {
field value: T
field next: ListNode<T>

}

The above structure definition defines a ListNode<T> type for representing linked lists with elements
of any consistent type, T. When instantiating a ListNode, the type parameter T must be supplied with
an explicit type argument for this specific instance. For example, new ListNode<Cow>() constructs a new
ListNode that holds Cow elements.

9.1.2 Type Parameters on Functions

Function definitions may also introduce type parameters in order to make function behavior generic over
types. The function parameter types, result type, and any types in the function body may reference this the
function’s type parameters. For example, for any type T, the following function takes an element of type T
and a ListNode that carries the same element type T and returns a new ListNode with the new element
prepended to the beginning of the list:

fn cons<T>(elem: T, list: ListNode<T>) -> ListNode<T> {
let head = new ListNode<T>() in {
head.next = list;
head.value = elem;
head

}
}

Calls to functions with type parameters instantiate the type parameters with type arguments implicitly
(unlike the explicit type arguments for new). The type arguments are inferred from the types of the argument
expressions. For example, in the following code, T is inferred to be type Cow for this particular call to cons:

let herd: ListNode<Cow> = ...
cow: Cow = ... in {

cons(cow, herd)
}

9.2 Methods, Signatures, and Subtyping

This extension introduces some features commonly associated with with object-oriented languages.

9



9.2.1 Structure Methods

The subtyping extension supports method definitions in structures that declare the method name, parameter
names and types, result type, and body of methods. These methods are available for invocation on each
instance of the containing structure type with syntax similar to field access. For example:

struct Cow {
field spots: i64
method moo(enthusiasm: i64) -> unit {
Roost.println("I have " + Roost.dumpi64(self.spots) + " spots.");
Roost.print("Moo");
let i = enthusiasm in
while 0 < i {
Roost.print("Oo");
i = i - 1;

}
let i = enthusiasm in
while 0 < i {
Roost.print("!");
i = i - 1;

}
Roost.println("!");

}
}

fn main(args: str[]) -> unit {
let cow = new Cow() in {
cow.spots = 13;
// Call the moo method on this 13-spotted cow.
cow.moo(32);

}
}

While otherwise similar to functions, methods are distinguished by providing a reference to the structure
instance on which they are invoked, using the implicitly available name self (like Java’s this). Roost
methods are similar to Java instance methods. In all scopes, fields and methods must be accessed with a
qualified name (explicit use of the self keyword: self.f, not f,).

Unlike Java classes, Roost structure types do not support defining initialization code to run as a
“constructor” for an object instance. However, a simple convention makes it nearly as easy: in each structure
type, define a method of the form:

struct S {
field number: i64
field boolean: bool
method init(x: i64, y: bool) -> {
// initialize fields
self.number = x;
self.boolean = y;
self

}
}

Then in place of the Java expression new A(3, false), use the Roost expression new A().init(3, false).
Roost structures do not support inheritance.
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9.2.2 Signatures and Subtyping

Roost signature types define abstract types without implementations, similar to Java interfaces, by declaring
a set of method names and types, but no method body implementation. Structure definitions may use the
optional impl clause to declare that they define methods compatible with all method types in one or more
parent signatures:

sig C {
method m(x: i64, y: str) -> bool

}
struct B impl C {
method m(a: i64, b: str) -> bool {
false

}
method n() -> unit {
Roost.println("hello");

}
}

The impl C clause indicates that structure A defines methods matching all the method names and
compatible types declared in the signature C. The type system allows the impl relationship only if B satisfies
this relationship with C.

Signatures may optionally use a with clause to require that any implementing structures implement all
methods declared by this signature as well as one or more parent signatures. Structures and signatures may
use impl or with clauses to refer to other signatures only if those other signatures are declared earlier in
the program than the declaration that uses them. This simplifies the compiler implementation and makes
it trivial to avoid cyclical with dependencies. Outside the impl/with restriction, signature names can be
referenced from any scope, regardless of the order of definitions.

Object references have structure or signature types: each definition struct A or sig B introduces a
structure type A or signature type B, respectively. Structure types can then be used in declarations for local
variables, parameters, for fields. For example, field obj: A declares a structure field obj of type A, that is,
a reference to an object of structure type A. The field declaration field ect: B similarly declares a structure
field ect of type B, that is, a reference to any object whose structure type implements the signature B.

Method overloading is not supported: a structure or signature (and all of its ancestor signatures) cannot
have multiple methods with the same name, even if the methods have different numbers or types of arguments,
or different return types.

9.2.3 Subtyping

Implementing or including a signature induces a subtyping relation. When structure A implements signature
B (struct A impl B), A is a subtype of B, written A <: B. When signature B includes signature C (sig B
with C), B is a subtype of C, written B <: C. Subtyping is also reflexive and transitive.

A impl B {. . .}
A <: B

A with B {. . .}
A <: B A <: A

A <: B B <: C
A <: C

If A is a subtype of B, a value of type A can be used in the program whenever the program expects a value
of type B. Subtyping is invariant for array types and type parameters. The type A[] is never a subtype of
B[] for distinct types A and B. Specifically, even if A <: B, A[] is not a subtype of B[].

Structure methods that implement a signature method (as well as signature methods that override a
signature method of the same name in a parent signature) may do so by using argument types that are
contravariantly subtyped and return types that are covariantly subtyped. For example, assuming A <: B, the
following is well typed:

sig E { method m(a: A) -> B }
struct D impl E { method m(a: B) -> A { new A() } }

11



Function types follow similar rules. Assuming A <: B, (B) -> A <: (A) -> B.

9.2.4 Method Dispatch

The actual method being invoked by a method call expression o.m() cannot always be determined statically,
because the concrete type of target object o may be unknown. When the static type of the target expression
is a structure type, the method to be invoked is known statically. When the static type of the target is a
signature type, the actual type of the object is not known statically, and the method to be invoked may be
the corresponding method of any structure type implementing the signature. Method calls on signature types
are resolved at run time via dynamic dispatch.

9.3 First-Class Function Closures

The core Roost language supports passing and saving functions as values, but only supports defining
functions in the top-level program scope. The first-class function closure extension additionally supports
binding new named function definitions in let expressions. Nested function definitions, like the rest of
the language, are lexically scoped, meaning that a nested function must capture the variables in scope at
definition time in its closure. When defined within a method scope, a function closure must capture the self
reference in addition to explicit bindings.

9.4 Interactions

When multiple relevant standard extensions are supported:

• Signatures may declare type parameters in the same way as structures; types in the signature definition
may references these type parameters.

• Types in structure methods and signature method declarations may reference the type parameters of
the enclosing structure or signature scope.

• Like functions, methods may declare and reference their own type parameters. The syntax is identical.

• When implementing or including a signature with type parameters using impl or with, the implementing
structure or including signature must provide type arguments to instantiate those parameters:

sig Siggy<T> { /* ... */ }
struct Structy impl Siggy<Cow> { /* ... */ }
struct Strooct<A> impl Siggy<A> { /* ... */ }

• Subtyping of parametric types is invariant in the type argument: even if A <: B, the type Vector<A> is
not a subtype of Vector<B>.

10 Roost Syntax

The language syntax is show in Figure 1. Here, keywords are shown using monospace font (e.g., while);
operators and punctuation symbols are shown using single quotes (e.g., ‘;’); the other terminals are written
using small caps fonts (Id, Integer, and String); and nonterminals using slanted fonts (e.g., expr).
The remaining symbols are meta-characters: (...)∗ and (...)+ denote the Kleene star and plus operations,
respectively, and ( ... )? denotes an optional sequence of symbols.

10.1 Precedence

Figure 1 defines an ambiguous grammar. Table 1 defines precedence for operators. Additionally:

• The optional else binds to the innermost if;
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program ::= ( fn | struct | sig )∗

fn ::= fn Id ( typeParams )? ‘(’ ( Id ‘:’ type ( ‘,’ Id ‘:’ type )∗ )? ‘)’ ‘->’ type block

typeParams ::= ‘<’ Id ( ‘,’ Id )∗ ‘>’

typeArgs ::= ‘<’ type ( ‘,’ type )∗ ‘>’

type ::= i64 | bool | str | unit | Id | type ‘[’ ‘]’

| ( typeParams )? ‘(’ ( type ( ‘,’ type )∗ )? ‘)’ ‘->’ type | Id typeArgs

struct ::= struct Id ( typeParams )? ( impl ( Id ( typeArgs )? )+ )? ‘{’ ( field | methodDef )∗ ‘}’

field ::= field Id ‘:’ type
methodDef ::= method block

method ::= method Id ( typeParams )? ‘(’ ( Id ‘:’ type ( ‘,’ Id ‘:’ type )∗ )? ‘)’ ‘->’ type

sig ::= sig Id ( typeParams )? ( with ( Id ( typeArgs )? )+ )? ‘{’ method∗ ‘}’

block ::= ‘{’ ( stmt ‘;’ | blockExpr ( ‘;’ )? )∗ ( simpleExpr )? ‘}’
stmt ::= location ‘=’ expr | return ( expr )? | break | continue | call
expr ::= blockExpr | simpleExpr

blockExpr ::= let ( Id ( ‘:’ type )? ‘=’ expr | Id ‘:’ type | fn )+ in blockExpr
| if expr blockExpr ( else blockExpr )?

| while expr blockExpr
| block

simpleExpr ::= literal
| location
| expr binop expr
| unop expr
| ‘(’ expr ‘)’
| call

| new type ‘[’ expr ‘]’ | new Id ( typeArgs )? ‘(’ ‘)’

| expr ‘.’ length
| self

literal ::= Integer | String | true | false | ‘(’ ‘)’ | null

location ::= Id | expr ‘[’ expr ‘]’ | expr ‘.’ Id

call ::= Roost ‘.’ Id ‘(’ ( expr ( ‘,’ expr )∗ )? ‘)’
| expr ‘(’ ( expr ( ‘,’ expr )∗ )? ‘)’

| expr ‘.’ Id ‘(’ ( expr ( ‘,’ expr )∗ )? ‘)’

binop ::= ‘+’ | ‘-’ | ‘*’ | ‘/’ | ‘%’ | ‘&&’ | ‘||’ | ‘<’ | ‘<=’ | ‘>’ | ‘>=’ | ‘==’ | ‘!=’
| ‘<<’ | ‘>>’ | ‘>>>’ | ‘&’ | ‘|’ | ‘^’

unop ::= ‘-’ | ‘!’ | ‘~’

Figure 1: Roost Syntax. Core language uses a plain background. Standard extensions are highlighted:
parametric types ; structure methods and signature types ; and first-class function closures
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• In a block where a blockExpr is followed by another expr starting with ‘-’ or ‘(’ without an intervening
‘;’, the blockExpr and the following expr are individual expressions in sequence within the block, not a
single call or subtraction expression. As an example, this function returns -1, not 0:

fn f() -> i64 {
let x = 1 in { x }
-1

}

10.2 Syntactic Sugar

For purpose of simplifying the formal typing and evaluation rules for Roost, we assume the following rules for
desugaring certain Roost syntactic forms by rewriting them in terms of other simpler syntactic forms:

• Multi-binding let expressions: Each n-binding let expression of the form:

let x1 = e1
x2 = e2
/* ... */
xn = en in {

/* body */
}

is desugared to a nesting of n single-binding let expressions:

let x1 = e1 in
let x2 = e2 in
/* ... */
let xn = en in {
/* body */

}

• Block sequence expressions: Block expressions that appear in a sequence without a semicolon are
desugared to use an explicit semicolon. For example, { if (x) { x = !x; () } x } is desugared to
{ if (x) { x = !x; () }; x }.

• Block result expressions: Blocks with no result expression are rewritten to include an explicit result
expression of (), the unit value. For example, the block { x = e; } is desugared to { x = e; () }.

Note: these desugaring rules are purely for simplicity in defining the type system and operational semantics.
It is not required to use these desugarings in implementing the language.

11 Type System

This section defines the type system for the Roost language.

11.1 Type System Syntax

Programs are notated “P ”; type environments are notated “Γ”; types are notated “τ ”; names of structure types
are notated “t”; non-type identifiers are notated “x”; expressions (and statements) are notated “e”; location
expressions may also be notated “l”; empty sequences (such as empty programs or environments) are notated
“·”. Typing environments Γ are lists of typings (x : τ), named type definitions (t = {x1 : τ1, . . . , xn : τn}),
subtypings (τ1 <: τ2), and loop contexts (loop).

Γ ::= · | Γ, e : τ | Γ, t = {(x : τ)∗} | τ <: τ | loop
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` P Program P is well-typed.

T-program
P ` Γ Γ ` Γ Γ ` P

` P

P ` Γ Program P defines type environment Γ.

T-def-empty

· ` ·

T-def-fn
P ` Γ x /∈ Γ

P fn x(x1 : τ1, . . . xn : τn) -> τ e ` Γ, x : (τ1 × . . .× τn)→ τ

T-def-struct
P ` Γ t /∈ Γ |{x1, . . . , xn}| = n

P struct t {field x1 : τ1 . . . field xn : τn} ` Γ, t 7→ {x1 : τ1, . . . , xn : τn}

Γ ` Γ′ Type environment Γ′ is well-formed using type definitions from type environment Γ.

T-env-empty

Γ ` ·

T-env-bind
Γ ` Γ′ Γ ` τ

Γ ` Γ′, x : τ

T-env-def
Γ ` Γ′ ∀i ∈ 1..n,Γ ` τi

Γ ` Γ′, t 7→ {x1 : τ1, . . . , xn : τn}

Γ ` τ Type τ is well-formed under type environment Γ.

T-type-scalar
τ ∈ {i64, bool, str, unit}

Γ ` τ

T-type-array
Γ ` τ

Γ ` τ[ ]

T-type-nominal
Γ(t) = {. . .}

Γ ` t

T-type-fn
∀i ∈ 1..n,Γ ` τi Γ ` τ
Γ ` (τ1 × . . .× τn)→ τ

Figure 2: Roost type environments (core language).

Typing environments support looking up a variable typing with Γ(x), which yields τ from the first typing
x : τ found by searching the environment entries from the right to left. Due to supporting shadowing of
variable names, the right-to-left search is important. Similarly, Γ(t) yields the member typings from the first
named type definition t 7→ {x0 : τ0, . . . , xn : τn} searching left to right.

11.2 Core Language Type System

Figure 2 shows top-level type-checking judgments for Roost language programs. Program P is well-typed,
written ` P , if its top-level function and structure definitions define a type environment P ` Γ that is
well-formed Γ ` Γ and under which the bodies of all of its function and structure definitions are well-typed
Γ ` P . A type environment is well-formed if all of its internal type names refer to types defined in the
environment. (Name well-formedness rules like this could be considered prerequisites to type checking, but
we include them here for completeness.)

Figure 3 shows typing rules for programs Γ ` P and expressions (and statements) Γ ` e : τ . Bodies of
functions are type-checked in a typing environment containing all declared function types and structure types
plus the parameter and result types of the function definition. In anticipation of the standard extensions, the
core language typing rules use the subtype relation τ1 <: τ2. For the core language on its own, the subtype
relation is simply type equality, that is, τ1 <: τ2 is equivalent to τ1 = τ2.
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Γ ` P Program P is well-typed under type environment Γ.

T-empty

Γ ` ·

T-fn
Γ, x1 : τ1, . . . , xn : τn, result : τ ` e : τ

Γ ` P fn x(x1 : τ1, . . . xn : τn) -> τ e

T-struct

Γ ` P struct t {field x1 : τ1 . . . field xn : τn}

Γ ` e : τ Expression (or statement) e has type τ under type environment Γ.

T-true

Γ ` true : bool

T-false

Γ ` false : bool

T-i64

Γ ` Integer : i64

T-str

Γ ` String : str

T-unit

Γ ` () : unit

T-arith
Γ ` e0 : i64 Γ ` e1 : i64 op ∈ {+,-,/,*,%,<<,>>,>>>,&,|,ˆ}

Γ ` e0 op e1 : i64

T-concat
Γ ` e0 : str Γ ` e1 : str

Γ ` e0 + e1 : str

T-bool
Γ ` e0 : bool Γ ` e1 : bool op ∈ {&&,||}

Γ ` e0 op e1 : bool

T-ord
Γ ` e0 : i64 Γ ` e1 : i64 op ∈ {<=,<,>=,>}

Γ ` e0 op e1 : bool

T-eq
Γ ` e0 : τ0 Γ ` e1 : τ1 τ0 <: τ2 τ1 <: τ2 op ∈ {==,!=}

Γ ` e0 op e1 : bool

T-unary
Γ ` e : i64 op ∈ {-, ∼}

Γ ` op e : i64

T-not
Γ ` e : bool
Γ ` !e : bool

T-var
Γ(x) = τ

Γ ` x : τ

T-apply
Γ ` e0 : (τ1 × . . .× τn)→ τr ∀i ∈ 1..n,Γ ` ei : τ ′i ∧ τ ′i <: τi

Γ ` e0(e1, . . . , en) : τr

T-builtin
Roost.x : (τ1 × . . .× τn)→ τr ∀i ∈ 1..n,Γ ` ei : τ ′i ∧ τ ′i <: τi

Γ ` Roost.x(e1, . . . , en) : τr

T-array
Γ ` e : i64

Γ ` new τ [e] : τ[ ]

T-new
Γ(t) = {. . .}

Γ ` new t() : t

T-elem
Γ ` e0 : τ[ ] Γ ` e1 : i64

Γ ` e0[e1] : τ

T-length
Γ ` e : τ[ ]

Γ ` e . length : i64

T-field
Γ ` e : t1 Γ(t1) = {. . . , x : τ2, . . .}

Γ ` e . x : τ2

T-block
∀i ∈ 0..n,Γ ` ei : τi Γ ` e : τ

Γ ` {e0; . . . en; e} : τ

T-let
Γ ` e1 : τ1 Γ, x : τ1 ` e2 : τ2

Γ ` let x : τ1 = e1 in e2 : τ2

T-if
Γ ` e1 : bool Γ ` e2 : unit

Γ ` if e1 e2 : unit

T-ifelse
Γ ` e1 : bool Γ ` e2 : τ2 Γ ` e3 : τ3 τ2 <: τ τ3 <: τ

Γ ` if e1 e2 else e3 : τ

T-while
Γ ` e1 : bool Γ, loop ` e2 : unit

Γ ` while e1 e2 : unit

T-break
loop ∈ Γ

Γ ` break : unit

T-continue
loop ∈ Γ

Γ ` continue : unit

T-assign
Γ ` l : τ1 Γ ` e : τ2 τ2 <: τ1

Γ ` l = e : unit

T-return
Γ ` result : τ1 Γ ` e : τ2 τ2 <: τ1

Γ ` return e : unit

Figure 3: Roost typing rules (core language).
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11.3 Parametric Polymorphism

Figure 4 shows rules that are added to the five Roost typing judgments to extend Roost with parametric
polymorphic typing for functions and structures. Highlights:

• Function and structure definitions with type parameters introduce parameterized type abstractions,
written with <t1, . . . , tn>, over function and structure types.

• Type parameters on function and structure declarations are in scope for use in all types within the
function or structure definition.

– Type environments support an additional form of mapping, t 7→, to indicate that type parameter t
is in scope. The lookup Γ(t) proceeds right to left as before, but yields the first matching mapping
for t, whether it is a type parameter mapping t 7→ ◦, a structure type definition mapping t 7→ {. . .},
or a structure type abstraction mapping t 7→ <t1, . . . , tn> {. . .}.

– Type parameters on function definitions are in scope during type checking of function bodies.

• Type abstractions must be applied to type arguments from the environment to produce concrete types
that can be used in expressions.

– Applying a type abstraction to type arguments produces a concrete type by applying a substitution,
θ = [t1 7→ τ1, . . . , tn 7→ τn], to the body of the type abstraction that rewrites all of its references to
the type parameters t1, . . . , tn as references to the corresponding type arguments τ1, . . . , τn.

– Function calls for functions with type parameters are type checked by inferring a compatible set of
type arguments to substitute for the type parameters based on the types of the argument and
result expressions in the current context of the call expression.

– Type checking the instantiation of objects from structure types with type parameters requires
applying the structure type abstraction to type arguments from the current environment to obtain
a concrete structure type.

– Type checking the use of a field from an object with a concrete structure type substitutes the
concrete type arguments for the type parameters in the declared type of the field in the structure’s
definition.

11.4 Methods, Signatures, Subtyping

Figure 5 shows typing rules for methods, signatures, and subtyping. Some rules are omitted and will be
derived/discussed at March 12 tutorials. The subtype relation (<:) is defined informally in Section 9.2.3.
This document will be updated with more formal rules following these tutorials.

For simplicity, we assume that no structure definition contains a field and a method of the same name
and that all field definitions precede all method definitions in a structure definition

11.5 Parametric + Subtype Polymorphism Together

Left as a (tricky) exercise to the reader for now. :)

11.6 Types for Function Closures

Left as a (simpler) exercise to the reader.

12 Semantics

Under construction!
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P ` Γ Program P defines type environment Γ.

T-def-fn-parametric
P ` Γ x /∈ Γ

P fn x<t1, . . . , tm> (x1 : τ1, . . . xn : τn) -> τ e ` Γ, x : <t1, . . . , tm>(τ1 × . . .× τn)→ τ

T-def-struct-parametric
P ` Γ t /∈ Γ |{t1, . . . , tm}| = m |{x1, . . . , xn}| = n

P struct t <t1, . . . , tm> {field x1 : τ1 . . . field xn : τn} ` Γ, t 7→ <t1, . . . , tm> {x1 : τ1, . . . , xn : τn}

Γ ` Γ′ Type environment Γ′ is well-formed using type definitions from type environment Γ.

T-env-var-parametric
Γ ` Γ′

Γ ` Γ′, t 7→ ◦

T-env-def-parametric
Γ ` Γ′ ∀i ∈ 1..n, (Γ, t1, . . . , tm) ` τi

Γ ` Γ′, t 7→ <t1, . . . , tm> {x1 : τ1, . . . , xn : τn}

Γ ` τ Type τ is well-formed under type environment Γ.

T-type-nominal-parametric
∀i ∈ 1..m,Γ ` τi Γ(t) = <t1, . . . , tm> {. . .}

Γ ` t<τ1, . . . , τm>

T-type-fn-parametric
Γ′ = Γ, t1 7→ ◦, . . . , tm 7→ ◦ ∀i ∈ 1..n,Γ′ ` τi Γ′ ` τ

Γ ` <t1, . . . , tm> (τ1 × . . .× τn)→ τ

Γ ` P Program P is well-typed under type environment Γ.

T-fn-parametric
Γ, t1 7→ ◦, . . . , tm 7→ ◦, x1 : τ1, . . . , xn : τn, result : τ ` e : τ

Γ ` P fn x <t1, . . . , tm> (x1 : τ1, . . . xn : τn) -> τ e

T-struct-parametric

Γ ` P struct t <t1, . . . , tm> {field x1 : τ1 . . . field xn : τn}

Γ ` e : τ Expression (or statement) e has type τ under type environment Γ.

T-apply-parametric
Γ ` e0 : <t1, . . . , tm> (τ1 × . . .× τn)→ τ θ = [t1 7→ τ ′′1 , . . . , tm 7→ τ ′′m]

Γ ` e1 : τ ′1 τ ′1 <: θτ1 . . . Γ ` en : τ ′n τ ′n <: θτn

Γ ` e0(e1, . . . , en) : θτ

T-new-parametric
Γ(t) = <t1, . . . , tm> {. . .}

new t <τ1, . . . , τn> () : t <τ1, . . . , τn>

T-field-parametric
Γ ` e : t <τ1, . . . , τm> Γ(t) = <t1, . . . , tm> {. . . , x : τ ′, . . .}

Γ ` e . x : [t1 7→ τ1, . . . , tm 7→ τm]τ ′

Figure 4: Additional Roost typing rules for parametric polymorphism , extending the corresponding
judgments in Figures 2 and 3.
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P ` Γ Program P defines type environment Γ.

T-def-sig-subtype
P ` Γ t /∈ Γ |{x1, . . . , xk}| = k

P sig t with t1 . . . ts { method x1(y : τy, . . . , y
′ : τ ′y) -> τ1 e1 . . . method xk(z : τz, . . . , z

′ : τ ′z) -> τk ek }
` Γ, t 7→ {x1 : (τy × . . .× τ ′y)→ τ1, . . . , xk : (τz × . . .× τ ′z)→ τk} < {t1, . . . , ts}

T-def-struct-subtype
P ` Γ t /∈ Γ |{x1, . . . , xn} ∪ {x′1, . . . , x′k}| = n+ k

P struct t impl t1 . . . ts { field x1 : τ1 . . . field xn : τn
method x′1(y : τy, . . . , y

′ : τ ′y) -> τ ′1 e1 . . . method x
′
k(z : τz, . . . , z

′ : τ ′z) -> τ ′k ek }
` Γ, t 7→ {x1 : τ1, . . . , xn : τn, x

′
1 : (τy × . . .× τ ′y)→ τ ′1, . . . , x

′
k : (τz × . . .× τ ′z)→ τ ′k} < {t1, . . . , ts}

Γ ` Γ′ Type environment Γ′ is well-formed using type definitions from type environment Γ.

T-env-def-subtype
Γ ` Γ′ ∀i ∈ 1..n,Γ ` τi ∀i ∈ 1..m,Γ′ ` ti
Γ ` Γ′, t 7→ {x1 : τ1, . . . , xn : τn} < {t1, . . . , tm}

Γ ` τ Type τ is well-formed under type environment Γ.

T-type-nominal-subtype
Γ(t) = {. . .} < {. . .}

Γ ` t

Γ ` P Program P is well-typed under type environment Γ.

T-sig-subtype
March 12 tutorial determines this.

Γ ` P sig t with t1 . . . ts {method x1 : τ1 . . . method xn : τn}

T-struct-subtype
March 12 tutorial determines this.

Γ ` P struct t impl t1 . . . ts {. . . , method x1 : τ1 . . . method xn : τn}

Γ ` e : τ Expression (or statement) e has type τ under type environment Γ.

T-invoke-subtype
Γ ` e0 : t Γ(t) = {. . . , x : (τ1 × . . .× τn)→ τ, . . .} < {...} ∀i ∈ 1..n, ((Γ ` ei : τ ′i) ∧ (τ ′i <: τi))

Γ ` e0.x(e1, . . . , en) : τ

Figure 5: Additional Roost typing rules for methods, signatures, and subtype polymorphism , extending
the corresponding judgments in Figures 2 and 3.
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13 Builtin Functions

Roost provides a small set of builtin functions for I/O operations, basic type conversions, and other system-
level functionality. The following builtin functions are predefined implicitly in all Roost programs. Types
and documentation of these functions are shown in Table 2.

Roost Builtin Function Behavior
Roost.println(s: str) -> unit prints string s followed by a newline
Roost.print(s: str) -> unit prints string s
Roost.printi64(i: i64) -> unit prints integer i

Roost.readbyte() -> i64 reads one byte from the input, sign-extends to i64
Roost.readln() -> str reads one line from the input
Roost.eof() -> bool checks end-of-file on standard input

Roost.parsei64(s: str, n: i64) -> i64 returns the integer that s represents or n of s is
not an integer

Roost.dumpi64(i: i64) -> str returns a string representation of i
Roost.ascii(s: str) -> i64[] an array with the ASCII codes of chars in s
Roost.string(a: i64[]) -> str builds a string from the ASCII codes in a

Roost.random(n: i64) -> i64 returns a random integer in the range 0 and n-1,
inclusive

Roost.time() -> i64 returns number of milliseconds since program start
Roost.exit(n: i64) -> unit terminates the program with exit code n

Table 2: Builtin functions.

To invoke builtin functions, the program must use method calls qualified with the Roost name; for
instance, Roost.random(100) or Roost.parsei64("301",0). For simplicity, it is not required to allow
builtin functions to be passed as values. For each explicit call to Roost.f, the compiler should generate a
procedure call to Roost_f in the assembly output.
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14 Change Log

• 2019-02-15: minor revisions in version 1

– Removed optional explicit type arguments in call expression.
– Clarified precedence to resolve ambiguity of - in sequences of expressions under blocks.
– Allowed all expressions (simple and block) to be explicitly sequenced with ; in blocks.

• 2019-02-20: version 2

– Allow calling expressions.
– Restrict sequencing to use block or effect expressions.
– Revise treatment of ambiguity in sequencing within blocks.
– Differentiate function type syntax from declaration syntax.
– Ban unqualified field/method references. All field and method references must use self in all

scopes.

• 2019-03-01: version 3

– Allow let*-style blocks: initializer expressions may refer to preceding bindings in the same let
block.

– while yields a unit type result.
– Eliminate the misguided break e and continue e forms.
– Include return in control-flow discussion.
– Add type system for core language.
– Include discussion of standard extensions to the core language.

• 2019-03-02: version 4

– Fix typos in type system.
– Define and describe rules for type environments.

• 2019-03-02: version 5

– Miscellaneous typo fixes and updates of outdated text.
– Remove outdated scoping restrictions.

• 2019-03-04: version 6

– Fix typos in T-assign, T-field, T-let.

• 2019-03-07: version 7

– Description and reorganization of type environment syntax, lookups to support extensions.
– Typing rules for parametric polymorphism.
– Partial typing rules for methods, signatures, and subtyping.

• 2019-03-12: version 8

– Fix bug in grammar: type typeArgs changed to Id typeArgs
– Fix type of a Roost builtin function: replace int[] with i64[]

• 2019-04-02: version 9

– Replace Roost.readi64 with more clearly defined Roost.readbyte builtin.
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