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Tiny Compiler: Back End
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It is time to build the Tiny compiler back end. Our front end already parses and produces an AST.
We first build a translation to from AST to intermediate representation (IR): instructions for an abstract
machine with infinitely many named storage locations. Next, we review a code generator to translate IR to
x86 assembly code. Finally, we insert basic machine-independent optimizations on the IR.

1.1 Goals

� Preview course concepts by building a working compiler at accessible scale, with guidance. Concept
exposure (not concept mastery) is the goal of this activity.

� Start learning Scala and associated tools. (https://cs.wellesley.edu/~cs301/s19/tools/)

� Try working with potential project teammates or tutorial group members.

1.2 Instructions

• Complete this activity in groups of 3. Choose teammates with whom you have not worked before.
Include at least one CS 251 alum per group if possible.

• Use a CS GNU/Linux lab workstation for programming. The tools are all ready to go. Write
non-programming answers and notes in these pages.

• Aim for a big-picture view of each compiler stage. Do not worry if details are fuzzy: guess,
follow intuition, experiment to see what works. Check in with me if you are lost or stumped.

• Complete this activity by next Friday, when we will review it briefly.

2 Setup

Start from your tiny-front code if it’s done. Or, use these steps to get a completed frontend:

1. If needed: Log in to a Microfocus lab workstation, open a terminal, and run:
source /home/cs301/live/env/init/account.sh

2. Download the starter code archive:
curl -L -O https://cs.wellesley.edu/~cs301/s19/project/tiny/tiny-back.tar.gz

3. Extract the project directory tiny-back from the archive: tar xfz tiny-back.tar.gz

4. Launch IntelliJ IDEA and open this project: idea.sh tiny-back &
If needed: Choose Do not import settings, choose a UI style, then Skip Remaining and Set Defaults.

5. When prompted to Import project from sbt, click OK.

6. Open File > Settings. In Build, Execution, Deployment > Compiler, enable Build project automatically.

7. Find files in the Project pane as before.
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3 Intermediate Representation

The first step in the back end is to translate our Tiny AST to intermediate code for a simple abstract machine
that is closer to the model of a real computer. Unlike ASTs, but similar to assembly code, intermediate code
programs have flat, sequential structure.

Our abstract machine has infinitely many storage cells, each with a unique name: x1, x2, etc. The abstract
machine supports a small set of instructions that read operands, perform simple computations on them, and
store the result in a destination cell. Instruction operands, o, are either:

• the name of a storage cell (thereby referring to the cell’s contents); or

• a literal number value.

A program is a linear sequence of instructions to be executed in order. The abstract machine supports
the following instructions:

• x := o
A copy instruction reads a source operand, o, and stores it in the destination cell, x.

• x := o1 + o2
An add instruction reads two source operands, o1 and o2, and stores the sum in the destination cell, x.

• x := input
An input instruction reads an integer input and stores it in the destination cell, x.

• print o
A print instruction reads a source operand and prints it as output.

This style of abstract machine language is called three-address code (TAC), since each instruction addresses
at most three operands.

Exercise 1. What does the following TAC program print if the user provides input 7?
x1 := 3
x2 := input
x3 := x1 + x2
x4 := x3 + x3
print x4
x5 := x4 + 5
x6 := x5 + x2
print x6

Look at that TAC again. It looks quite similar to a Tiny source program with mildly different syntax. In
fact, putting aside superficial syntax differences, it appears that our TAC language is basically the Tiny
language with expression nesting restricted to one level. Nonetheless, we use an explicitly separate TAC
representation in our Tiny compiler (and in our later compiler, when there will be wider differences in the
languages).
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Exercise 2. Write a TAC program to print 4i1 + 2i2 + 5, given any inputs i1 and i2, in that order.

As with the original Tiny source syntax, this syntax is just a convenient way to write down a concrete
representation of an abstract program structure. Unlike the original Tiny syntax, we will never use this TAC
syntax within our compiler. It is just a convenience for pencil and paper.

Exercise 3. Read the IR.scala file. Rewrite your answer from Exercise 2 as a Scala expression of type
Seq[TacInstruction]. Use a Vector, which is also a Seq, and acts similarly to an array while also
supporting insert, prepend, and append operations. For example, A Vector[Int] holding the numbers
1, 2, 3 in order is constructed using the Scala syntax Vector(1,2,3).

4 Translating ASTs to TAC

Next, we translate a Tiny program AST to an equivalent TAC program. These are rather different structures.
The program AST is a hierarchical, non-linear tree. The TAC program is a flat, linear sequence of instructions.
ASTs have nested expression nodes. TAC instructions accept only storage cells or literals as operands. We
must be sure that our translation is semantics-preserving. That is, the observable behavior (input and output
for us) of the translated program must be identical to that of the source program. Like the recursive descent
parser used to build the AST from a linear source code string, we will use a recursive algorithm to traverse
the AST and emit a new linear structure.

The key is to traverse through the AST with a recursive algorithm, emitting one or more TAC instructions
for each node. The result of each expression (i.e., each node) will be stored in its own TAC storage cell. To
translate an expression node that needs this result, we simply emit an instruction that will read the contents
of the cell where the result is to be stored. Let us derive the algorithm for this translation. For now, omit
variables and assignments.

3



Exercise 4. Draw the AST for the following Tiny program:

print ( 7 + ( input + 5 ) ) ;

The TAC translation of this program is shown below. Match each node in the original AST to the
corresponding instruction in the translated TAC. What tree traversal order (one of in, pre, post, level)
could produce these instructions in this order? Try to reverse-engineer the algorithm that would generate
this code given the AST you extracted. (Use pseudocode on paper or whiteboard. Stick to high-level
description. Ignore Scala for now.) The algorithm is described below if you get stuck.

x1 := 7
x2 := input
x3 := 5
x4 := x2 + x3
x5 := x1 + x4
print x5

It is tempting to translate an AST for an expression ( 3 + 5 ) to a single TAC instruction, x2 := 3 + 5,
or even simpler, x2 := 8. Resist the urge! Stay away from special cases; they will complicate the translation
algorithm. (Spoiler alert: our optimizer will fix this for us later. Let’s keep the concerns of translation and
optimization separate.)

Exercise 5. Try your proposed AST-to-TAC translation algorithm on the following program:

print ( ( 2 + 4 ) + ( 6 + 8 ) ) ;

Write the translated TAC program here, then check your answer by evaluating it manually.
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4.1 TAC Generation

The algorithm for generating TAC from an AST is explained generally here. The commented partial Scala
implementation in IRGen.scala makes this more concrete.

For expressions, follow this basic plan:

• Store the result (if any) of each AST node in a unique TAC cell. (Even an integer literal should be
copied into a TAC cell!)

• Generate code by a post-order traversal of the AST:

– Emit code for all subexpression children of this node, remembering the destination cell of the last
instruction emitted by translating each child node.

– Emit an instruction for this node, using the child destination cells as the corresponding source
operands of the instruction.

For statements, emit instructions to compute the expression (using the plan above) and use the last
destination cell in the resulting instructions as the source operand for an instruction to implement the
statement.

For programs, simply emit instructions for each statement in order. All three of these get slightly more
involved when we introduce variables later.

Exercise 6. In Compiler.scala, uncomment the call to backend in main. In IRGen.scala, read the
Scala code for translateProgram and the Print case in translateStmt. Ignore the symtab argument
and the Assign case for now. Ask questions about anything that does not make sense. The following
Scala operations are used:

• Pattern-matching: match with some cases. Quiz your CS 251 teammates about this,
check the relevant section in the Scala documentation (https://docs.scala-lang.org/tour/
pattern-matching.html), or ask me.

• Sequence (Seq) operations. We use immutable Vectors as sequences, applying these operations:

– s1 ++ s2 produces a new sequence with the elements of s1 followed by the elements of s2.

– seq :+ elem produces a new sequence with all of the elements of seq in order followed by
the element elem.

– seq.last returns the last element of non-empty sequence seq.

• The provided fresh function returns a new TacCell with a unique ID every time it is called.

Exercise 7. In IRGen.scala, implement translateExpr. The entire body is a single pattern-matching
expression with one case for each type of Expr. Each case should return a Seq[TacInstruction]: a
sequence of TAC instructions. We provide the Input case. Add the Num case, then test it on a simple
program. Repeat for Add. Ignore Var for now. When you need to call translateExpr, pass the existing
symtab argument along. (We use it later for variables.)

4.2 Variables and Symbol Tables

The final AST-to-TAC translation concern is variables. A natural representation of Tiny variables exists:
represent each unique Tiny variable by a unique TAC cell. An assignment statement is translated to a
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copy instruction that copies the source into the variable’s corresponding cell. Later variable references are
translated to instructions that copy from the same cell. This requires a durable mapping from variable name
to TAC cell, since variable references may appear arbitrarily later in the program. For this, we use a symbol
table. (A symbol table has more jobs in a compiler for a larger language.)

Translating an assignment statement requires the usual translation of the source expression and an
instruction copying the expression result to the assigned variable’s TAC cell. If the variable is already mapped
in the symbol table, reuse its mapped TAC cell.1 Otherwise, create a fresh TAC cell, map it in the symbol
table, and use the fresh cell.

Exercise 8. Draw the AST for the following Tiny program (or use the front end to generate it), then
translate the AST to TAC by hand. Build a symbol table as you go to track which variable maps to
which TAC cell. Double check your translated code: run it by hand and check the output.

x = ( 4 + input ) ;
y = input ;
print ( x + ( y + 297 ) ) ;

Exercise 9. Implement translation of assignment statements (the Assign case in translateStmt) and
variable reference expressions (the Var case in translateExpr). Test on a few programs.

Our Scala code represents the symbol table with a mutable2 Map[String,TacCell]: a map where
keys are source-code variable names (as String) and values are the TAC cells that represent them (as
TacCell). This single symbol table is shared by all levels of the translation algorithm since Tiny has no
scoping or control-flow constructs.

Entries for key k in map symtab are accessed with symtab(k) and updated with symtab(k) = v.
Recall that, since we already implemented variable scope checking in the frontend of the Tiny compiler,
it is guaranteed that any variable use we see here follows its definition.

1CS 251 note: This implements a mutable variable semantics for Tiny. Nonetheless, since Tiny lacks any scoping or
control-flow, mutable variables will act identically to immutable bindings with shadowing. In other words, we could just as well
map a variable to a fresh cell at every assignment with no discernible difference. This implementation ambivalence is not present
in more interesting languages.
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5 x86 Code Generation

The final stage in a compiler is Code Generation: translation from the intermediate representation to code in
the target language. Our Tiny-to-x86 compiler targets x86 assembly language. There are actually many
interesting machine-specific optimizations to do at this stage, such as mapping TAC cells to registers in a
way the minimizes copying and use of the stack, choosing which variables could be mapped to registers vs.
stack locations, selecting the best set of instructions, and more.

For the sake of building the Tiny compiler quickly, our code generator is straightforward and applies no
optimization at all. It does two basic tasks:

• Map TAC cells to stack locations in memory, which it does in truly dull fashion by using the TAC cell’s
ID to assign an offset into the stack frame.

• Translate each TAC instruction to one or more x86 instructions following a simple template.

After generating x86 assembly code, the compiler invokes the assembler and linker to build a complete
binary executable. Take a look through CodeGen.scala if you are curious.

Exercise 10. Uncomment the section containing the CodeGen and Link stages in Compiler.scala, per
the FIXME comments for this exercise. Run your Tiny compiler on a program of your choosing. It should
produce an executable file a.out. Now, for the moment of truth, run the command:

./a.out

Does it work??? Debug until it does, then celebrate accordingly!

6 Optimization

Congrats, you have a compiler that reads Tiny source code and produces an x86 executable! Let’s make it
even better. Instead of improving the simplistic code generator (feel free to think about that on your own), but
our goal is to implement a few machine-independent optimization on the intermediate representation. Just as
with the AST-to-TAC translation and the code generation stage, optimizations must be semantics-preserving.

Exercise 11. Consider briefly: what are some benefits of applying optimizations on intermediate code
instead of on source code or machine code?
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6.1 Design

Later in the course, we spend signficant time developing a general framework for expressing optimizations.
For now, we implement a few standard optimizations with ad hoc techniques (though later in the course you
will be able to look back and see the unifying thread). Just as with AST-to-TAC translation, a key rule for
our optimizations is to keep them general. Consider this TAC:

x1 := 4

x2 := 5

x3 := x1 + x2
print x3

It is tempting to try to build an optimizer that automatically recognizes this pattern all at once and
produces the equivalent program print 9. A pattern-based approach is actually useful in efficient machine-code
generation, but at this stage, we want to avoid a large, unruly, error-prone collection of special cases.

An optimization is just a function that takes a TAC program as input and returns another (equivalent)
TAC program as output. This means that we can make a larger optimization by composing two smaller
optimization. We therefore develop a small suite of minimal, independent optimizations that do little on
their own, but have big impact when composed.

6.2 Copy Propagation

You have likely been irritated at all of the wasteful copy instructions our AST-to-TAC translation emitted.
They are everywhere! The copy propagation optimization can help eliminate them. Here is the basic idea: if a
TAC instruction i has a storage cell as a source operand and this cell was last updated by a copy instruction,
it is equivalent for i to use the source operand of that copy instruction instead.

Table 1: Copy propagation example.

Original After Copy Propagation
x1 := 300 x1 := 300
x2 := input x2 := input
x3 := x2 x3 := x2
x4 := x1 + x3 → x4 := 300 + x2
print x4 print x4

Table 1 shows a transformation of original TAC instructions on the left by applying two copy propagations
to produce the new TAC instructions on the right. Both of the copy propagations target operands of the
original instruction, x4 := x1 + x3:

1. Replace the source operand x1 by 300, since x1 was last updated by copying 300.

2. Replace the source operand x3 by x2, since x3 was last updated by copying the contents of x2 and x2
has not been changed since then.

Copy propagation stops here: we cannot predict the input that will be stored into x2 when the program is
run, so we cannot propagate it as an operand to the add instruction. The print instruction uses x4, but it
was produced by an add instruction, not a copy instruction. Again, it may be tempting to go further here,
but the key is to keep it simple.

Exercise 12. Uncomment lines and remove a line as indicated by the FIXME note for this exercise to
introduce the Opt stage in Compiler.scala. Rerun the compiler to make sure it still works.
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Exercise 13. Read the code for copyPropagate in Opt.scala and try to understand how it performs
copy propagation algorithmically. Make notes with inline comments.

6.3 Dead Code Elimination

Dead code is code that does nothing useful: code that computes a result that never affects any observable
behavior of the program. (In Tiny, that means it does not affect input/print.) For example, the second line
of this Tiny program is dead code:

x = input ;
y = ( x + 4 ) ;
print ( x + x ) ;

A result is computed and stored in y, but the value of y never affects any printed output. We could
remove the second line without changing the observable behavior of the program. The dead code elimination
optimization performs this removal automatically. Feel free to take a look at the implementation in Opt.scala.

Is it useful? Our AST-to-TAC translation never introduces dead code. Tiny programmers may write
dead code, but even if they do not, and more importantly, the copy propagation optimization often does
cause code to become dead. Table 2 shows the continuation of the example from Table 1 by applying dead
code elimination after copy propagation.

Table 2: Dead code elimination example.

Original After Copy Propagation After Dead Code Elimination
x1 := 300 x1 := 300 →
x2 := input x2 := input x2 := input
x3 := x2 x3 := x2 →
x4 := x1 + x3 → x4 := 300 + x2 x4 := 300 + x2
print x4 print x4 print x4

6.4 Constant Folding

Our last classic optimization is constant folding. If a computation instruction (e.g., add) has literals (constants)
for all source operands, constant-folding pre-computes the result at compile time and replaces the instruction
with a simple copy instruction, where the source is the literal pre-computed answer. In our case, this means
replacing an instruction like x1 := 300 + 1 with x1 := 301.

Exercise 14. Implement constantFold in Opt.scala. Use the map method of sequences to produce a
new sequence of TAC instructions where addition instructions meeting the constant-folding criteria are
replaced by simply copies of constants and all other instructions are unchanged. Consult examples in
copyPropagate or deadCodeElim, your CS 251 teammates, or ask for help with map. Scala’s anonymous
function syntax is (param => body). The function constantFold is much smaller than the other two
optimizations. A simple implementation is 4-5 sparse lines.

6.5 Composing Optimizations

Our AST-to-TAC translation never produces instructions that can be constant-folded, but just as with dead
code elimination, constant folding becomes useful when copy propagation is used.
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Exercise 15. Apply copy propagation to this TAC sequence manually. Then apply dead code elimination
to the result. Then apply constant folding to that result. What do you get? Can you reapply optimizations
to make the program even smaller?

x1 := 7

x2 := 8

x3 := x1 + x2
print x3

It turns out that these three optimizations can feed off each other if composed repeatedly. To get the
best result, we run them until a fixed point, a TAC program for which a pass through all three optimizations
produces the exact same program. At this point, there is nothing more for them to do.

Exercise 16. In the apply method in Opt.scala, replace once with fixpoint. Run the compiler on a
couple Tiny programs to see how much the fixpoint improves optimization.

7 Reflections

At this point we have an optimizing compiler for Tiny. The language is, well, tiny, and the compiler could
use smarter code generation and a few other improvements, but we have managed to consider interesting
problems and solutions at most stages of a typical compiler architecture. Compilers for larger languages will
complicate these problems significantly, so as we move on to start our deeper consideration of each compiler
stage over the course of the semester, keep the following in mind:

The combined jobs of a compiler are complicated overall if we consider a compiler as a black box. A key
to a clean, approachable implementation is to decompose large complicated problems into smaller simpler
problems, solve those individual problems in a simple, elegant way, and then compose the solutions. This
is true at a small scale, in the way we design recursive case-by-case translations or many simple individual
optimizations. It is just as true at a large scale, where we break the compiler into several independent stages.

Hopefully you enjoyed building the Tiny compiler and gained some initial perspective for the rest of the
semester. Do not worry if the details are fuzzy – it will take the whole semester to revisit all these items in
detail! If you have any thoughts on how helpful these activities were or how to improve them, let me know.
Happy compiling!

A Extending the Language (Optional)

Exercise 17. (Optional) Port your implementation of multiplication from the Tiny frontend to this
version of the compiler and extend the backend to support multiplication as well. If you made good
design decisions initially, this will be fairly straightforward.

Feel free to experiment with other language improvements as well. Think ahead about how each feature
impacts each stage of your compiler.
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