CS 301 Spring 2019
Tutorial Assignment Optimization, Data-Flow Analysis
9 April

1 Plan

Intermediate Machine-

Source Lexical Syntax Semantic Code Target
—>) —I> A —I>1 . —T> Code —>] Independent }—> ! —>
Program Analysis Analysis Analysis Generation Ophirization Generation Program

While you are implementing intermediate code generation and x86 machine code generation in your Roost
compilers, we will begin exploring machine-independent optimization of code. Automatically improving
the efficiency of code is a tall order, especially considering it must not break the code (change what it
computes) along the way! We will spend 2+ weeks on a survey of optimization topics. We start with small,
ad hoc optimizations. Next week, we will show how a fairly general theoretical model can support clean and
principled implementations of many sophisticated analyses and optimizations necessary to generate efficient
code.

The readings and exercises are in parts: control-flow graphs and an introduction to optimization; local
optimizations; and data-flow analysis. This set of reading and exercises is a little larger than usual, since we
did not have meetings this past week. We will preview some parts during class on Friday ahead of tutorial
meetings.

e The first set of readings/exercises gives an overview of control-flow graphs and optimization in general.

e The second set of readings and exercises explores simple, local optimizations for eliminating redundant
expressions with a technique called value numbering. This optimization is local in that it considers
only single basic blocks — small stretches of code that always execute together in all executions of the
program.

e The third set of readings and exercises introduces the idea of data-flow analysis to support a few
specific optimizations that reason about the flow of data through more complicated control flow
structures like conditionals and loops. Data-flow analyses in general compute facts or invariants that
must be true at the beginning and end of each basic block in a Control Flow Graph for a single
method/function/procedure body.

Next week we will continue with more depth on data-flow analysis and other techniques.

2 Readings

Control-flow graphs, basic blocks, and optimization:

e Dragon 8.4
Alternative: EC 5.2, 5.3.2

e EC 8.1 - 8.3 (Skip or skim 8.2.1)
Local optimizations:

e EC 8.4 (Skip or skim 8.4.2)

e Dragon 8.5
Intro to data-flow analysis:

e Dragon 9 — 9.2

3 Exercises

1. Consider the following TAC code:

x =2

y =3

z =11
LO:

TO = x < 10
fjump TO L1
Tl =x <y
fjump T1 L3
T2 =x+1
x = T2

jump L2

L3:

T3 = y < 100
fjump T3 L2
T4 =y + 1
y =T4

jump L3

L2:

T5 =z + 3
z =T5

jump LO

L1:

(a) Build the basic blocks and control flow graph for this code.

(b) Identify the loops in the CFG. (We will see some formal definitions for a couple loop notions later.
For now, use intuition.)

2. Consider the following two basic blocks:

a=b+c a=b+c
d =c e=c+c
e=c+d f=a+c
f=a+d g=b+e
g=Db+e h=b+c
h=b+d

(a) Build a DAG for each block to show the dependences between the operations it performs. (Dragon
and EC use different DAG notation. The Dragon book form is more flexible.)

(b) Perform local value numbering separately on each of the two basic blocks.
(¢) Explain any differences in the redundancies found by these two techniques.

(d) At the end of each block, £ and g have the same value. Why do the algorithms have difficulty
discovering this fact?

3. (Dragon 8.5.6) Consider this basic block of intermediate code that uses C-style pointers. Recall that
the expression *p uses the value of p as an address, referring to the contents of the memory location
given by that address (not to the contents of variable p itself).

alil = b
*p = C
d = alj]
e = *p
*p = ali]

(a)
(b)

Assume p’s value is unrestricted. In other words, p may hold the address of (i.e., point to) any
location in memory. Construct the DAG for the basic block.

Assume p’s value is restricted to hold the address of (i.e., point to) only the storage for b or d.
Construct the DAG for the basic block.

4. For the Control Flow Graph (CFG) in Dragon Figure 9.10 (attached):

(a)
(b)

(e)

Identify the loops.

Statements (1) and (2) in By are both copy statements, in which a and b are given constant values.
For which uses of a and b can we perform copy propagation and replace these uses of variables by
uses of a constant. Do so, wherever possible, and show the resulting CFG. Do any statements
become Dead Code?

Identify any global common subexpressions for each loop, and eliminate them wherever possible.
Show the resulting CFG.

Using the CFG from (b), Identify any induction variables for each loop. Be sure to take into account
any constants introduced in (b). Can strength reduction and/or induction variable elimination be
applied? If so, show the resulting CFG. If not, describe one or two instructions that, if added the
flow graph, would result in an opportunity for strength reduction.

Does the CFG from part (c) contain any loop-invariant computations to which code motion can
be applied? If not, describe one or two instructions that, if added to the flow graph, would result
in an opportunity for code motion.

5. For the CFG in Dragon Figure 9.10 (attached), compute the following:

(a)

(b)

()

Reaching Definitions:

e The gen and kill sets for each block. I usually represent this information in a table like the
one started below:

\ Block \ gen \ kill \
By (1), (2) | (8), (10), (11)
By
Bs
B,
Bs
Bg
e The IN and OUT sets for each block. Write the IN and OUT sets on the CFG (attached) while

working through the algorithm. Print a few copies to use for the other parts of this problem.

Available Expressions:
e The e gen and e_ kill sets for each block. For the e kill sets, you may use a description like
“all expressions using a or b as an operand.”
e The IN and OUT sets for each block.
Live Variables:
e The def and use sets for each block.
e The IN and OUT sets for each block.

6. (Dragon 9.2.6) Prove by induction that the IN and OUT sets for a block never shrink while computing
Reaching Definitions with Dragon Algorithm 9.11 (page 607). In other words, show that, once a
definition has been added to one of these sets on an iteration, all future iterations also include it in
that set. Use induction over the number of iterations of the innermost loop. Consider what Reaching
Definitions means and explain intuitively why we would want the proven property to hold. A succinct,
careful explanation here can supplant a formal proof if needed.

7. Consider Dragon 9.2.7 or 9.2.8 and try to develop intuition for how to relate data-flow facts back to
program behavior. What do they really mean? You do not need to build full solutions.

IN:

OUT:

IN:

OUT:

¢ IN:

IN:
(10) a=b*d

(11) b=a-d

l OUT:

Exit

IN:

OUT:

IN:

OUT:

	Plan
	Readings
	Exercises

