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1 Overview

Roost a statically typed programming language invented for CS 301. The core Roost language provides
functions, primitive data types, simple compound data structures, scoping, and basic control flow. Roost
is a syntactically similar to Rust, but semantically closer to Swift. A set of extensions to the core includes
features partly familiar from other languages such as Java, Scala, ML, Rust, Swift, and countless others. The
Roost language is simple enough that its grammar fits on one page, yet sophisticated enough to require
many interesting considerations in a compiler. This document gives an informal overview of the language
syntax and semantics, with some formal specifications, including the grammar and type system.

1.1 Core Language Highlights

The core Roost language requires:

• Sound static typing: Roost has a sound static type system with built-in types for integer, Boolean, and
string values, variant enumeration types, compound structure types, array types, and function types.

• Function references as values: Roost supports basic higher order functions, allowing references to
functions to be passed, stored, and returned as values. The core language lacks nested function
definitions and closures.

• Dynamic allocation and garbage collection: Roost uses dynamic heap allocation and manipulation by
reference for structures, variants, strings, and arrays. The language allows for garbage collection to
automatically reclaim heap space.

• Null safety and memory safety: The language has no nullable types. Enumeration variants can encode
presence or absence of a value without risking run-time null dereference. Roost uses run-time checks
for array bounds violations, negative array size, and division by zero.

1.2 Standard Extensions

The full Roost language extends the core language with these features that improve the ergonomics of the
language and make interesting optional extensions to the implementation project:

• Generic types: The full Roost language includes generic types (more technically: parametric type
polymorphism), similar to Java, Scala, ML, Rust, and Swift.

• Module system: The full Roost language includes a module system providing nested name spaces for
functions, enumerations, and structures, as well as support for abstract types.

1.3 Acknowledgments

Parts of this document, aspects of the Roost language, and related assignments were adapted from materials
developed at Cornell University and Williams College.
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2 Lexical Structure

2.1 Keywords

The following are case-sensitive keywords in the core Roost language and standard extensions:

enum extern fn mod mut pub struct type use bool i64 String else if let match while
break continue return false true

Non-alphabetic lexical tokens (along with the above keywords) are shown in Figure 1.

2.2 Identifiers

Identifiers must begin with a letter followed by any sequence of letters, digits, or the underscore character (_).
Keywords are not valid as identifiers. Identifiers are case-sensitive: x and X are distinct identifiers. The case
of the first character of an identifier distinguishes among two families of identifiers:

• Id: Identifiers starting with a lower-case letter are used to name variables, functions, structure
fields , and modules .

• TypeId: Identifiers starting with an upper-case letter are used to name types and enumeration variants.

2.3 Comments

There are two comment forms.

• A line comment begins with // and includes all subsequent characters through the next newline
character or the end of the program text, whichever comes first.

• A block comment begins with /* and includes all subsequent characters, including newline, through
the next occurrence of */. An unclosed block comment is a lexical error.

2.4 Literals

The language includes Boolean, integer, and string literal tokens:

• Integer literals (Integer) consist of a sequence of digits. Non-zero integer literals must not have
leading zeroes. Integers have 64-bit signed values in the range −263 through 263 − 1, inclusive, but
decimal integer literals capture only the non-negative part of this range. The form -301 is not an
integer literal; it is a unary integer negation expression applied to the integer literal 301.

• String literals (String) are sequences of characters delimited by double quotes. String characters can
be: single printable ASCII characters (ASCII codes between decimal 32 and 126) except double-quote
(") and backslash (\); or the escape sequences \" to denote quote, \\ to denote backslash, \t to
denote tab, and \n to denote newline. No other characters or character sequences can occur in a string.
Unclosed strings are lexical errors.

• Boolean literals are the keywords true and false.

Note that the unit literal is given by a pair of separate tokens, ( followed by ), not a single token ().

2.5 Tokenization

Whitespace consists of a sequence of one or more space, tab, or newline characters. Whitespace may appear
between any tokens. Keywords and identifiers must be separated by whitespace or a token that is neither a
keyword nor an identifier. For instance, elsey represents a single identifier, not the keyword else followed
by the identifier y.
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3 Program Structure and Syntax

The top level of a program in the core Roost language consists of a sequence of function (fn), structure
type (struct), and enumeration type (enum) definitions, and must include exactly one function definition
indicating the program entrypoint that will be called with the array of command-line arguments when the
program is launched. The entrypoint function must be named main, must take exactly one argument of type
[String] (an array of strings), and must have result type () (unit):

fn main(args: [String]) -> () { /* body of main function */ }

Subsequent sections of this document describe the syntax and semantics of various language forms informally.
Figure 1 gives a formal definition of the Roost syntax. To eliminate ambiguity, this grammar uses

significant internal structure, especially within the grammar for expressions, paired with operator precedence
rules defined separately in Table 1. Fixed terminals including keywords, operators, and other symbols, are
shown using single quotes around monospace font (e.g., ‘let’ and ‘;’). Lexical structure of terminals for
identifiers (Id, TypeId), integer literals (Integer), and string literals (String) is defined in Section 2.
Non-terminals use slanted fonts (e.g., expr). The remaining symbols are meta-characters: (...)∗ and (...)+

denote the Kleene star and plus operations, respectively, and ( ... )? denotes an optional item.

4 Data Types

Values of types () (unit), bool (Boolean), and i64 (integer) are passed by value: a copy of the entire value
itself is stored, passed to/from functions calls/returns, or used by operations such as ==.

Values of array, structure, enumeration, and String types are allocated in the heap and passed by
reference: a copy of the memory address at which the value resides is stored, passed, or used. There is no “null”
reference in Roost every array, structure, enumeration, and string value is a valid reference to a memory
location contains the relevant type’s representation. Note that the equality comparison operations (== and
!=) check reference equality not structural equality on these types.

4.1 Unit, Booleans, Integers

The unit type () has a single value, also written (). Since all operations yield a result in Roost, the
unit value and type are used to indicate a results that carries no interesting information. Unit plays a role
similar to the role played by void in many statement-focused languages, but has a value. Booleans are
represented by the type bool; the literals true and false have this type. The integer type i64 is a 64-bit
two’s-complement integer; integer literals have this type. Integer arithmetic operations yield 64-bit results.
On overflow low 64-bits of the true result are kept, yielding modular results.

4.2 Strings

Strings are immutable character sequences represented by the type String. Strings are immutable, meaning
that new strings may be created by applying operations to existing strings, but the contents of existing strings
cannot be modified. All string operations except reference equality comparison are provided by external
functions in the standard library. Roost does not have a type for single characters.

4.3 Arrays

Fixed-length arrays of arbitrary element type T are have type [T]. There are no restrictions on array elements
types: array elements can be arrays themselves, allowing programmers to build multidimensional arrays. For
example, the type [[T]] describes a two-dimensional array constructed as an array of arrays of type [T].

Arrays are created and initialized dynamically using one of two forms:

• [ e1, e2, . . . en ] creates a new array of n cells filled by the given elements e1 through en, which much
all have the same type.
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TopLevel ::= Item∗

Item ::= Function | Structure | Enumeration
Function ::= Header Block | ‘extern’ Header ‘;’

Header ::= ‘fn’ Id TypeParams? ‘(’ ( ‘mut’? Id ‘:’ Type ‘,’ )∗ ( ‘mut’? Id ‘:’ Type )? ‘)’ ‘->’ Type

Structure ::= ‘struct’ TypeId TypeParams? ‘{’ ( ‘pub’? Id ‘:’ Type ‘,’ )∗ ( ‘pub’? Id ‘:’ Type )? ‘}’

Enumeration ::= ‘enum’ TypeId TypeParams? ‘{’ ( TypeId ( ‘(’ Type ‘)’ )? ‘,’ )∗ ( TypeId ( ‘(’ Type ‘)’ )? )? ‘}’

Type ::= ‘(’ ‘)’ | ‘bool’ | ‘i64’ | ‘String’ | ‘[’ Type ‘]’ | Path? TypeId TypeArgs? | ‘!’

| ‘fn’ TypeParams? ‘(’ (Type ‘,’ )∗ Type? ‘)’ ‘->’ Type

Expression ::= ExprControl | ExprCompute

ExprControl ::= Block | If
| ‘while’ ‘(’ Expression ‘)’ Block
| ‘match’ ‘(’ Expression ‘)’ ‘{’ (Pattern ‘=>’ Expression ‘,’ )∗ (Pattern ‘=>’ Expression )? ‘}’

Block ::= ‘{’ ‘}’ | ‘{’ Step∗ Effect ‘}’ | ‘{’ Step∗ End ‘}’
Step ::= Effect | ExprControl ‘;’?

Effect ::= ‘let’ ‘mut’? Id ( ‘:’ Type )? ‘=’ Expression ‘;’
| Location ‘=’ Expression ‘;’
| Call ‘;’

End ::= Expression | ‘return’ Expression? | ‘break’ | ‘continue’
If ::= ‘if’ ‘(’ Expression ‘)’ Block ( ‘else’ Else )?

Else ::= Block | If
Pattern ::= Literal | Id | ‘_’ | TypeId ( ‘(’ Pattern ‘)’ )?

ExprCompute ::= ExprCompute BinaryOp ExprCompute
| UnaryOp ExprCompute
| ExprConstruct

BinaryOp ::= ‘*’ | ‘/’ | ‘%’ | ‘+’ | ‘-’ | ‘<<’ | ‘>>’ | ‘>>>’ | ‘&’ | ‘∧’ | ‘|’
| ‘<’ | ‘<=’ | ‘>’ | ‘>=’ | ‘==’ | ‘!=’ | ‘&&’ | ‘||’

UnaryOp ::= ‘-’ | ‘!’

ExprConstruct ::= ‘[’ (Expression ‘,’ )∗ Expression? ‘]’
| ‘[’ Expression ‘;’ Expression ‘]’

| Path? TypeId ( ‘(’ Expression ‘)’ )?

| Path? TypeId ‘{’ ( Id ‘:’ Expression ‘,’ )∗ ( Id ‘:’ Expression )? ‘}’
| Literal
| ExprCore

Literal ::= ‘(’ ‘)’ | ‘true’ | ‘false’ | Integer | String

ExprCore ::= ‘(’ Expression ‘)’ | Location | Call

Location ::= Path? Id | ExprConstruct ‘[’ Expression ‘]’ | ExprConstruct ‘.’ Id

Call ::= ExprCore ‘(’ (Expression ‘,’ )∗ Expression? ‘)’

Figure 1: Syntax of core Roost language. Highlighted grammar elements refer to extensions beyond the
core language, defined in Figure 5. In the core language, these optional elements are never present.
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• [ e ; n ] creates a new array of n cells, each of which is initialized to hold copies of the initial element
value e.

The expression array.length evaluates to the (immutable) length of a given array. Neither length
nor .length is a keyword. Instead, an array length expression is syntactically a structure field access (see
Structure Types) with field name length that is distinguished semantically by the type system. Arrays of
length n are indexed from 0 through n− 1 with bracket notation: array[index]. Array indexing includes
run-time bounds checking. Bounds violations raise a run-time error.

4.4 Structure Types (struct)

Roost structure types or structs are program-defined compound data types comprised of multiple parts
stored in fields of the structure. A structure type must be defined explicitly by the program, and provides
the template for individual structures (instances of the structure type). Roost structs are like C structs and
similar to Java classes without methods.

A structure type definition begins with the keyword struct, followed by identifier (starting with an
upper-case letter) naming the structure type, followed by a curly-brace delimited, comma-separated list of
declarations of fields. Field declarations consist of an identifier and a type. Field identifiers start with a
lower-case letter. For example:

struct StudentRecord {
name: String,
class: i64,
id: i64,
majors: [String],

}

A comma following the last field declaration is optional.
This definition introduces a new type, StudentRecord, for use in the program, type rules for what fields

it includes and what their types are, and a form for constructing new instances of this type.
A fresh instance of structure type StudentRecord is created by an expression of this form:

StudentRecord {
name: "Com Piler",
class: 2023,
id: 301,
majors: ["CS", "MUS"]

}

A comma following the last field initializer is optional. This expression allocates space for a StudentRecord
structure and initializes its fields with the given values.

Fields of a structure instance are mutable and may be accessed for use or assignment with the . symbol:
student.majors refers to the majors field of this structure given by student.

Note that the array length expression array.length appears syntactically as a structure field access with
field name length. The logical field name, length, is not a keyword and is a valid program-defined identifier.
Semantically, an array length expression is distinguished from a structure field access expression for field
length by the type of the target expression. (See Section 8.)

4.5 Enumeration Types (enum)

Roost enumeration types or enums are program-defined data types that has multiple variants for different
possible forms of data. An enumeration type must be defined explicitly by the program, and provides the
template for possible variants of the enumeration type and the type of value they may carry. Roost enums
are quite similar to Rust or Swift enums. They are more powerful than C or Java enums. They are similar to
ML algebraic datatypes or Scala case classes without methods.
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An enumeration type definition begins with the keyword enum, followed by identifier (starting with an
upper-case letter) naming the enumeration type, followed by a curly-brace delimited, comma-separated list of
variants. Variants consist of an identifier and, optionally, a parenthesized value type. Variant identifiers start
with an upper-case letter. For example:

enum OptionalString {
Some(String),
None,

}

A comma following the last variant declaration is optional. Variants with carried values are indicated
by a parenthesized type of carried values following the variant name. Variants without carried data lack
parentheses.

This definition introduces a new type, OptionalString, for use in the program, type rules for what
variants are available and what type of data they carry, and forms for constructing new instances of each
variant of this type.

The expression Some("hello") constructs a new value of the Some variant of type OptionalString,
carrying the string value "hello". The expression None constructs a new value of the None variant of type
OptionalString, carrying no data.

The carried value of an enumeration variant is immutable; the carried value cannot be accessed like the
values of struct fields. Instead, pattern matching with a match expression, described later, allows inspecting
an enum value to determine its variant extract the carried value.

4.6 Recursive Type Definitions

Structure and enumeration types can be used anywhere in the program, including to define recursive types,
such as this linked list definition:

enum List {
Link(Node),
Empty

}
struct Node {
value: i64,
rest: List,

}

For example, this expression creates a linked list holding elements 1, 2, 3:

Link(Node {
value: 1,
rest: Link(Node {
value: 2,
rest: Link (Node {
value: 3,
rest: Empty

})
})

})

4.7 Storage and Variables

Program storage locations are immutable and mutable local variables (including function parameters,
represented in the stack or registers), fields of structures (allocated in the heap), payloads of enumeration
variants, and cells of arrays (allocated in the heap). By construction, the Roost language forces all program
storage locations must be initialized explicitly upon creation.
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5 Functions

All code for computation (as opposed to type definitions) in Roost programs appears inside the bodies of
function definitions.

5.1 Function Definitions

A function definition begins with the keyword fn, followed by an identifier (starting with a lower-case
letter) naming the function, followed by a parenthesized, comma-separated list of parameter identifiers and
their types, followed by a right arrow and a result type. A function definitions is completed by a block
expression delimited by open and close curly braces indicating the function body. For example:

fn factorialA(n: i64) -> i64 {
if (n <= 1) {
1

} else {
n * factorialA(n - 1)

}
}
fn factorialB(n: i64) -> i64 {
if (n <= 1) {
return 1

}
n * factorialB(n - 1)

}
fn factorialC(n: i64) -> i64 {
if (n <= 1) {
return 1

}
return n * factorialC(n - 1)

}

Unlike local variables, function types–including parameter types and result types–must be notated explicitly:
they are not inferred. As with local variables, function parameters support an optional mut qualifier. By
default, parameter variables are immutable: they may not be mutated by assignment in the function body.
Using the mut qualifier on the parameter declaration allows assignment.

fn param_mutation_example(x: i64, mut y: i64) -> i64 {
if (x == y) {
y = x + y; // This is allowed: y is mutable.

} else {
x = 7; // This is a type error: x is not mutable.

}
return y / x

}

Result types for functions never include a mut qualifier since they do not describe a storage location.

5.2 Function Calls

Evaluation of a function call consists of the following steps: passing the parameter values from the caller to
the callee, executing the body of the callee, and returning the control and the result value (if any) to the
caller. Each time a function is called, the argument expressions are evaluated left to right and the resulting
values are bound to the corresponding parameters of the function in a new scope. Structure, enumeration,
array, and string arguments are passed as references.
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After binding parameters to values, the body expression of the called function is evaluated and control
transfers back to the caller with the result value of the body expression as the result value of the call, and
control transfers back to the caller. If evaluation reaches an explicit return, evaluation ends early and control
transfers back to the caller, returning the result value of the return argument expression as the result value
of the call. The three factorial functions above work equivalently.

Statically, at each call site, the number and types of provided arguments must match the parameters of
the function or declaration and the declared result type must match the expected type in the callee. Also, the
return type from the declaration of a function must match the return or result expressions in the body. The
type of the function’s body–and all return expressions in the body–must be compatible with the declared
result type of the function.

5.3 External Functions

To support calling basic system functions that are not written in Roost, the language includes a second form
of function definition: the external function header. These functions are declared with the extern keyword
as a prefix. Instead of providing a function body, the function header ends with a semicolon. For example,
some basic system functions in the Roost standard library are not implemented in Roost themselves:

extern fn println(string: String) -> ();

6 Expressions

Roost is an expression-focused language that emphasizes evaluating for result values over evaluating for
side effects. Roost still supports side effects, but structures them under expressions. Code structures that
appear in function bodies (including the entire body itself) produce a result value when evaluated, even if
that value is simply the unit-typed value ().

6.1 Blocks, Bindings, Assignments, Effects

Block expressions, including as required for function bodies, if, and while, control local scope and support
sequencing of steps in evaluation. Block expressions are delineated by curly braces { }. Blocks start with
zero or more sequential steps for effect (rather than results):

• A let binding defines a new local variable that is in scope through the end of the containing block. The
binding includes an optional mut qualifier, a variable identifier, an optional typing, and an expression
to be evaluated to initialize the variable. By default, variables are immutable, meaning they do not
support mutation (assignment). Variables declared with let mut are mutable: they support mutation
by assignment. If the typing is omitted, the variable type is inferred from the initialization expression.

let greeting: String = "hello";
let object = "world"; // Type String is inferred
let mut x: i64 = 4; // x supports mutation by assignment

• An assignment evaluates its right hand side expression, then copies the result value to replace the
contents of its left-hand side mutable storage location (a mut variable, struct field, or array cell):

x = x + 5;
array[i] = array[i-1] * 2;

Note that the value copied depends on the type, as discussed in Section 4. Values of types (), bool,
and i64 are copied by value; values of other types are copied by reference.

• A function call, block, or control expression may be evaluated for its side effects.

if (array[i] == 7) {
println(greeting);
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} // OK: no semicolon
if (array[i+1] == 6) {
println(object);

}; // OK: semicolon

In the case of a block or control expression step (i.e., any step whose concrete syntax ends with a closing
curly brace), the semicolon is optional

Blocks end in one of three ways:

• An explicit result expression: in this case, the result of evaluating this expression becomes the result
value for evaluation of the entire block expression. For example, the following block evaluates to the
result value 7:

({
let mut x = 4;
x = x + 1; // Stores 5 in x.
x // This is the result of the block expression.

}) + 2 // This addition expression gives the result value of the function
// by adding the result of the inner block expression to 2.

• An explicit control directive: in this case, control is transferred elsewhere without providing a result
value for evaluation of the block: return leaves the function, break leaves a loop, continue leaves the
current loop iteration. Note: since these control directives terminate evaluation of the containing block,
they may appear only at the end of their containing block. No other placement is allowed.

• Neither a result expression nor a control directive: in this case, the evaluation of the block concludes
with unit () as its implicit result value.

6.2 Control-Flow

Control-flow operations if, while, and match are expressions that produce result value when evaluated. if,
else, and while require their bodies to be block expressions. For example, the following function prints
"odd" for odd numbers and "even" for even number arguments:

fn evenodd(x: i64) -> () {
println(
if (x % 2 == 0) { "even" }
else { "odd" }

)
}

The types of the expressions that form the result of the then and else branches must agree. When used
without the optional else block, an if expression must yield type unit () in the then branch.

The while expression evaluates its body iteratively. At each iteration, it evaluates the test condition. If
the condition is false, then it finishes the execution of the loop; otherwise it executes the loop body and
continues with the next iteration. The while loop expression must have a body expression with type (); it
yields the unit-typed value () as its result. break immediately terminates the loop without completing the
current iteration; continue immediately transfers control to the loop test without completing the current
iteration. Both break and continue may occur only within the body of a while loop. These loop control
expressions always refer to the innermost loop.

The return e form evaluates the expression e and then immediately terminates evaluation of the
containing function body, providing the result of e as the result value of the call. When used without an
explicit expression, return behaves as return ().
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6.3 Pattern Matching Expressions (match)

Roost provides pattern matching with match expressions, similar to pattern matching support in Scala, ML,
Rust, Swift, and others. Pattern matching can distinguish the variants of an enumeration, extract carried
values from enumeration variants, and evaluate different expressions according to the specific target value.
The match expression syntax consists of a target expression and several cases, separated by commas. Each
case consists of a pattern and a corresponding result expression.

For example, the following get_first_or function uses match to take a linked list (represented with the
List and Node types defined above), distinguish whether or not there is a first element, and return its first
element, otherwise return the given default argument value if there are no elements in the list:

fn get_first_or(list: List, default: i64) -> i64
match (list) {
Empty => default,
Link(node) => node.value,

}
}

A match expression is evaluated by first evaluating its target expression (getting the value of variable list
in this case) to get a target value, then matching this value against each of the case patterns in sequence
until a matching pattern is found, then the corresponding result expression in the case is evaluated in an
environment where all the pattern variables of the matching pattern are bound to the corresponding parts of
the target value. If no pattern matches, a run-time error arises and evaluation is terminated. All cases of the
match must have patterns of the same type as the target expression. There are a few types of patterns:

• Literal patterns: any unit, Boolean, integer, or string literal is a pattern that matches only identical
values of the same type.

• Wildcard pattern: the pattern _ matches any target value and may take on any type, without
restriction, but does not introduce a binding.

• Variable patterns: any variable name. A variable pattern matches and binds to any target value and
may take on any type, without restriction.

• Enumeration variant patterns: an enumeration variant with a carried pattern (instead of a carried
value). A variant pattern has the same type as the enumeration that defines this variant. A variant
pattern matches the target value if:

1. The target value has the same variant as the pattern; and
2. The variant pattern’s carried pattern matches the target value’s carried value and may introduce

bindings.

For example, calling get_first_or(Link(Node { value: 301, rest: Empty }), 240) will return 301.
It does this by matching the patterns against the list value in order:

1. The Empty pattern does not match the list value, since the list value has variant Link. Matching
continues to the next case.

2. The Link(node) pattern matches the target value because:

• The pattern and value have the same variant.
• The subpattern, a variable node, trivially matches and binds to the carried Node-type value of the

target variant.

Since the Link(node) pattern matches, the subpattern node introduces a new variable named node that
holds the carried value of the target Link value. In this case, that is the Node with a value of 301. Finally,
the corresponding result expression for this case is evaluated: here, node.value uses the new node variable
introduced by the matched pattern to refer to that Node in the target value and extract the value 301 from
its value field. This value is the result of the entire match expression and the function call.
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Priority Operator Description Associativity
1 [] . () array index, field access/array length, function call left
2 - ! (unary) integer negation, Boolean/bitwise complement right
3 * / % multiplication, division, remainder left
4 + - addition, subtraction left
5 << >> >>> shifts left
6 & bitwise AND left
7 ˆ bitwise exclusive OR left
8 | bitwise OR left
9 < <= > >= ordering comparison left
10 == != (in)equality comparison left
11 && short-circuit Boolean AND left
12 || short-circuit Boolean OR left

Table 1: Precedence rules for Roost unary and binary operators. Priority 1 is the tightest.

6.4 Simple Expressions

Simpler expressions include:

• Computation expressions: unary and binary arithmetic and logic expressions (described in Section 6.5).

• Value constructor expressions: array, structure, and enumeration constructor expressions; and boolean,
integer, string, and unit literals.

• Core expressions: locations (local variables, parameters, fields, or array elements); functions calls; and
explicitly parenthesized expressions.

Note that the grammar in Figure 1 is structured to induce explicit restrictions on the composition of these
expression forms to avoid ambiguity among these kinds of expressions.

6.5 Operators

Unary and binary operators include the following:

• Arithmetic operators: addition +, subtraction -, multiplication *, division /, and modulo %. The
operands must both be of type i64. Division/modulus by zero are dynamically checked, and cause
run-time errors.

• Bitwise operators: AND &, OR |, XOR ^. The operands must both be of type i64.

• Bit shift operators: shift left <<, arithmetic shift right >>, logical shift right >>>. The operands must
both be of type i64. Shifts by distances of 64 or greater are undefined.

• String concatenation with +. The operands must both be of type String.

• Relational comparison operators: less than <, less than or equal to <=, greater than >, and greater than
or equal to >=. Their operands must be integers.

• Equality comparison operators: equal == or different !=. The operands must have the same type. For
integer and Boolean types, operand values are compared. For reference types, references are compared.

• Boolean operators: short-circuit AND, &&, and short-circuit OR, ||. If the first operand of && evaluates
to false, its second operand is not evaluated. Similarly, if the first operand of || evaluates to true, its
second operand is not evaluated. The operands must be of type bool.

12



• Unary operators: integer negation -, Boolean logical or bitwise complement !. (The meaning of ! is
determined by whether it is applied to a bool or an i64 value.)

Operator precedence and associativity is defined by Table 1. These precedence levels and associativity
rules resolve ambiguity among the unary and binary expression forms. The grammar in Figure 1 enforces
precedence with respect to other expression forms.

7 Scope

For each program, there is a hierarchy of scopes consisting of: the top-level scope; the function body scopes
including function parameters; and the local nested scopes for let bindings and match cases within functions.

7.1 Nested Scopes

When resolving an identifier at a certain point in the program, the enclosing scopes are searched from
innermost to outermost until the first matching binding for the identifier is found. Identifiers can be used
only if they are defined in one of the enclosing scopes. More precisely, variables can be used (read or written)
only after they are defined in one of the enclosing let block scopes.

• The top-level scope consists of the names of all functions, structures, enumerations, and enumeration
variants defined in the program.

• The scope of a function consists of its parameters.

• The scope of a let binding extends from immediately after the let binding (not covering the expression
in the let binding itself) to the end of the containing block.

– Later let bindings that define a variable name that is already in scope introduce a distinct new
variable that shadows the earlier binding of this name. For example, this block evaluates to 7
using 3 distinct variables. Each let creates a new nested scope within the existing scope:

{ // Scope 0:
let x = 3 /* x is not in scope here */; // Scope 1: x=3

/* x is in scope here */
let y = x /* here x evaluates to 3 */ - 1; // Scope 2: y=2,x=3
let x = x /* here x evaluates to 3 */ + 2; // Scope 3: x=5,y=2,(shadowed)x=3
y + x /* here x evaluates to 5 */

}

The following block expression evaluates to 5:

{ // Scope 0:
let x = 3 /* x is not in scope here */; // Scope 1: x=3

/* x is in scope here */
({
let y = x /* here x evaluates to 3 */ - 1; // Scope 2: y=2,x=3
let x = x /* here x evaluates to 3 */ + 2; // Scope 3: x=5,y=2,(shadowed)x=3
y

}) + x /* here x evaluates to 3 */ // Scope 1: x=3
}

– Shadowing is distinct from assignment. While the following block also evaluates to 7, it uses only
2 distinct variables:

{ // Scope 0:
let mut x = 3; // Scope 1: x=3
let y = x - 1; // Scope 2: y=2,x=3
x = x + 2; // y=2,x=5 (no new scope, mutated x from Scope 1)
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y + x
}

The following block expression also evaluates to 7:

{ // Scope 0:
let mut x = 3; // Scope 1: x=3
({
let y = x - 1; // Scope 2: y=2,x=3
x = x + 2; // y=2,x=5 (no new scope, mutated x from Scope 1)
y

}) + x // Scope 1: x=5 (y no longer in scope, same x still in scope)
}

• A match expression introduces a new scope for each case. All pattern variables in a case are in scope
for the result expression of that case.

match (x) {
Link(node) => node.value + 1 /* node is in scope until here */,
Empty => 0 /* node is not in scope here */,

}

7.2 Flat and Type-Dependent Scopes

Field names in structure field access expressions such as name in student.name refer to fields declared for
the type of structure that is being accessed (in this case the type of student). Type information is required
to resolve references to field names. (Field names are not resolved in the same way as local variables.)

Program-defined type names introduced in the top-level scope by structure and enumerate type definitions
can be used in types anywhere in the program, either before or after the point of reference. Similarly, top-level
function names may be referenced in any function body, regardless of order of definition.

Unlike block scopes, where let introduces a new nested scope, top-level scopes and scopes within structure
or enumeration definitions are flat. Identifiers cannot be defined multiple times in the same scope: two
top-level functions may not share the same name; two fields of the same structure may not share the same
name; two variants of an enumeration may not share the same name.

8 Type System

This section defines the type system for the Roost language.

8.1 Syntactic Sugar

For purpose of simplifying the formal typing and evaluation rules for Roost, we assume the following rules for
desugaring certain Roost syntactic forms by rewriting them in terms of other simpler syntactic forms:

• Blocks are rewritten to ensure that every block expression contains exactly one explicit step followed
by one explicit end item. For example:

– The block { 3 } is rewritten as 3.

– The block

{
let x = 5; // 1. step
let y = 3; // 2. step
if (x < y) {
x = !x; // 3. step; 4. implicit end expression

} // 5. step
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x // 6. end
}

is rewritten as:
{
let x = 5; // 1. single step
{ // 1a. explicit end expression
let y = 3; // 2. single step
{ // 2a. explicit end expression
if (x < y) {
x = !x; // 3. single step
() // 4. explicit end expression

}; // 5. single step (with semicolon)
x // 6. original end expression

} // 2a. explicit end expression
} // 1a. explicit end expression

}

– Returns with no argument expression are rewritten as return ().
– Enumeration variants with no carried type/expression/pattern are rewritten to use unit () as

their carried type/expression/pattern.

Note: these desugaring rules are purely for simplicity in defining the type system and operational
semantics. It is not required to apply these transformations in implementing the language.

8.2 Type System Meta-Syntax and Environments

The formal definition of the type system uses additional formal meta-syntax which is not part of the
Roost language meta-syntax for programs. Programs are notated “P ”; type environments are notated
“Γ”; types are notated “τ ”; program-defined type and variant identifiers are notated “t”; other identifiers
are notated “x”; expressions (and statements) are notated “e”; location expressions may also be notated
“l”; immutability/mutability indicators are notated “m”; empty sequences (such as empty programs or
environments) are notated “·”. Typing environments, Γ, map various identifiers and context indicators to
their type information:

• Function and local variable identifier bindings, x 7→ m τ , indicating the immutability/mutability,
m ∈ { imm , mut }, and the type, τ , of the binding;

• Structure type definitions, t 7→ {x1 : τ1, . . . , xn : τn}, indicating the name of the structure type (t) and
the names and types of its fields;

• Enumeration type definitions, t 7→ {t1(τ1), . . . , tn(τn)}, indicating the name of the enumerationg type,
t, and the names and carried types of its variants; and

• Contexts indicators for:

– The result type of the containing function, result 7→ τ ; and
– The presence of a containing loop, loop.

The full grammar of the typing environment itself is:

Γ ::= · | Γ, x 7→ m τ | Γ, t 7→ {(x : τ)∗} | Γ, t 7→ {(t(τ))+} | Γ, result 7→ τ | loop

Typing environments support looking typing information for any identifier or context indicator with Γ(x),
Γ(t), or Γ(result). Lookups yield the value for the first mapping ( 7→) whose key matches the requested identifer
or context indicator, searching the environment from right to left. The right-to-left search is important to
model shadowing for local variables. Lookup of Γ(loop) succeeds if loop is present anywhere in the environment
and fails otherwise; it does not provide a value.
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8.3 Core Language Type System

Figure 2 shows top-level type-checking judgments for Roost language programs. Program P is well-typed,
written ` P , if its top-level function and structure definitions define a type environment P ` Γ that is
well-formed Γ ` Γ and under which the bodies of all of its function and structure definitions are well-typed
Γ ` P . A type environment is well-formed if all of its internal type names refer to types defined in the
environment. (Name well-formedness rules like this could be considered prerequisites to type checking, but
we include them here for completeness.)

Figure 3 shows typing rules for expressions (and statements) Γ ` e : τ . Bodies of functions are type-
checked in a typing environment containing all declared function types and structure types plus the parameter
and result types of the function definition. Figure 4 shows typing rules for patterns Γ ` p : τ ⇒ Γ′ (used by
the typing rule for match expressions).

8.4 The Never Type (!)

The never type, !, indicates the type of a value that will never actually exist. The type system allows items
of type ! to be used in place of any other type, since such use will never actually occur at run time.

For example, some functions never return.

// [Standard library function] Terminate the program. (Never returns.)
extern fn exit(code: i64) -> !;

// Infinite recursion
fn diverge() -> ! {
diverge()

}

Functions that never return could just as well be given any other type, like () or [String], but the never
type makes them most flexible. If exit had return type (), this would not type-check: the then branch has
type i64, but the else branch has type (); the types of the if branches must agree.

extern fn exit_unit(code: i64) -> ();
fn sample1(a: i64, b: i64) -> i64 {
let x: i64 = if (a < b) {
b // type of then branch: i64

} else {
exit_unit(1) // never returns a result value (terminates the program)

// type of else branch: ()
}; // ERROR: if-else branches have different types.
a + b + x

}

Without the never type, the type system is unaware that exit_unit will not return and the else result will
never be used. Resolving the type error requires an unpleasant workaround: add a bogus result expression of
the correct type after the exit_unit call in the else branch. This bogus result is never used, but satisfies the
type system.

fn sample2(a: i64, b: i64) -> i64 {
let x: i64 = if (a < b) {
b // type of then branch: i64

} else {
exit_unit(1); // never returns a result value (terminates the program)
0 // type of else branch: i64

}; // type of if-else: i64
a + b + x

}

16



` P Program P is well-typed.

T-program
P ` Γ Γ ` Γ Γ ` P

` P

P ` Γ Program P defines type environment Γ.

T-def-empty

· ` ·

T-def-fn
P ` Γ x /∈ Γ

P fn x (x1 : τ1 , . . . ,xn : τn ) -> τ e ` Γ, x 7→ imm fn(τ1, . . . , τn)→ τ

T-def-struct
P ` Γ t /∈ Γ |{x1, . . . , xn}| = n

P struct t {x1 : τ1 , . . . ,xn : τn } ` Γ, t 7→ {x1 : τ1, . . . , xn : τn}

T-def-enum
P ` Γ {t, t1, . . . , tn} ∩ Γ = ∅ |{t, t1, . . . , tn}| = n+ 1

P enum t { t1 ( τ1 ) , . . . , tn ( τn ) } ` Γ, t 7→ {t1(τ1), . . . , tn(τn)}

Γ ` Γ′ Type environment Γ′ is well-formed using type definitions from type environment Γ.

T-env-empty

Γ ` ·

T-env-bind
Γ ` Γ′ Γ ` τ

Γ ` Γ′, x : τ

T-env-def
Γ ` Γ′ ∀i ∈ 1..n,Γ ` τi

Γ ` Γ′, t 7→ {x1 : τ1, . . . , xn : τn}

Γ ` τ Type τ is well-formed under type environment Γ.

T-type-basic
τ ∈ {(), bool, i64, String, !}

Γ ` τ

T-type-array
Γ ` τ

Γ ` [ τ ]

T-type-nominal
Γ(t) = {. . .}

Γ ` t

T-type-fn
∀i ∈ 1..n,Γ ` τi Γ ` τ

Γ ` fn(τ1, . . . , τn)→ τ

Γ ` mut l Location l is mutable under type environment Γ.

T-mut-var
Γ(x) = mut τ

Γ ` mut x

T-mut-array

Γ ` mut e1[e2]

T-mut-field
Γ ` e : t

Γ ` mut e.x

Γ ` P Program P is well-typed under type environment Γ.

T-empty

Γ ` ·

T-fn
Γ, x1 : τ1, . . . , xn : τn, result : τ ` e : τ

Γ ` P fn x(x1 : τ1, . . . xn : τn) -> τ e

T-struct

Γ ` P struct t {. . .}

T-enum

Γ ` P enum t {. . .}

Figure 2: Roost type environments (core language).
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Γ ` e : τ Expression e has type τ under type environment Γ.

T-true

Γ ` true : bool

T-false

Γ ` false : bool

T-i64

Γ ` Integer : i64

T-string

Γ ` String : String

T-unit

Γ ` () : ()

T-arith
Γ ` e1 : i64 Γ ` e2 : i64 op ∈ {+, -, /, *, %, <<, >>, >>>, &, |, ˆ}

Γ ` e1 op e2 : i64

T-minus
Γ ` e : i64

Γ ` - e : i64

T-bit-not
Γ ` e : i64

Γ ` ! e : i64

T-ord
Γ ` e1 : i64 Γ ` e2 : i64 op ∈ {<=, <, >=, >}

Γ ` e1 op e2 : bool

T-eq
Γ ` e1 : τ Γ ` e2 : τ op ∈ {==, !=}

Γ ` e1 op e2 : bool

T-bool
Γ ` e1 : bool Γ ` e2 : bool op ∈ {&&,||}

Γ ` e1 op e2 : bool

T-bool-not
Γ ` e : bool
Γ ` !e : bool

T-new-enum
Γ ` e1 : τ1 Γ(t2) = {. . . , t1(τ1), . . .}

Γ ` t1(e1) : t2

T-new-struct
∀i ∈ 1..n,Γ ` ei : τi Γ(t) = {x1 : τ1, . . . , xn : τn}

Γ ` t {x1 : e1 , . . . ,xn : en } : t

T-field
Γ ` e : t Γ(t) = {. . . , x : τ, . . .}

Γ ` e .x : τ

T-array-list
∀i ∈ 1..n,Γ ` ei : τ

Γ ` [e1, . . . ,en] : [τ]

T-array-fill
Γ ` e1 : τ Γ ` e2 : i64

Γ ` [e1;e2] : [τ]

T-array-length
Γ ` e : [τ]

Γ ` e.length : i64

T-cell
Γ ` e1 : [τ] Γ ` e2 : i64

Γ ` e1[e2] : τ

T-let-imm
Γ ` e1 : τ1 Γ, x1 7→ imm τ1 ` e2 : τ2

Γ ` { let x1 : τ1 = e1 ; e2 } : τ2

T-let-mut
Γ ` e1 : τ1 Γ, x1 7→ mut τ1 ` e2 : τ2

Γ ` { let mut x1 : τ1 = e1 ; e2 } : τ2

T-var
Γ(x) = m τ

Γ ` x : τ

T-let-imm-infer
Γ ` { let x1 : τ1 = e1 ; e2 } : τ2

Γ ` { let x1 = e1 ; e2 } : τ2

T-let-mut-infer
Γ ` { let mut x1 : τ1 = e1 ; e2 } : τ2

Γ ` { let mut x1 = e1 ; e2 } : τ2

T-effect
Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` { e1 ; e2 } : τ2

T-ifelse
Γ ` e1 : bool Γ ` e2 : τ Γ ` e3 : τ

Γ ` if ( e1 ) e2 else e3 : τ

T-assign
Γ ` mut l1 Γ ` l1 : τ1 Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` { l1 = e1 ; e2 } : τ2

T-if
Γ ` e1 : bool Γ ` e2 : ()

Γ ` if ( e1 ) e2 : ()

T-while
Γ ` e1 : bool Γ, loop ` e2 : ()

Γ ` while ( e1 ) e2 : ()

T-break
loop ∈ Γ

Γ ` break : !

T-continue
loop ∈ Γ

Γ ` continue : !

T-call
Γ ` e0 : fn(τ1, . . . , τn)→ τ ∀i ∈ 1..n,Γ ` ei : τi

Γ ` e0 ( e1 , . . . , en ) : τ

T-return
Γ ` result : τ Γ ` e : τ

Γ ` return e : !

T-never
Γ ` e : !
Γ ` e : τ

T-match-case
Γ ` e0 : τ0 Γ ` p1 : τ0 ⇒ Γ′ Γ′ ` e1 : τ1 Γ ` match ( e0 ) { . . . } : τ1

Γ ` match ( e0 ) { p1 => e1, . . . } : τ1

T-match-empty
Γ ` e : τ0

Γ ` match ( e ) { } : !

Figure 3: Roost typing rules for expressions (core language).
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Γ ` e : τ ⇒ Γ′ Pattern p matches values of type τ under type environment Γ to yield environment Γ′.

T-pat-lit-unit

Γ ` () : ()⇒ Γ

T-pat-lit-bool

Γ ` Bool : bool⇒ Γ

T-pat-lit-i64

Γ ` Integer : i64⇒ Γ

T-pat-lit-string

Γ ` String : String⇒ Γ

T-pat-var

Γ ` x : τ ⇒ Γ, x 7→ τ

T-pat-wild

Γ ` _ : τ ⇒ Γ

T-pat-variant
Γ(t2) = {. . . , t1(τ1), . . .} Γ ` p : τ1 ⇒ Γ′

Γ ` t1 ( p ) : t2 ⇒ Γ′

Figure 4: Roost typing rules for patterns (core language).

Using the never type, !, as the return type for functions that never return allows expressions such as if to
be well-typed when some, but not all, branches result in such a function call, since an expression of type
! can take on any other type. In sample3, the else branch has type !, so it may also take on type i64 to
match the type of the then branch.

fn sample3(a: i64, b: i64) -> i64 {
let x: i64 = if (a < b) {
b // type of then branch: i64

} else {
exit(1) // never returns a result value (terminates the program)

// type of else branch: !
}; // type of if-else: i64
a + b + x

}

For the same reason, uses of return, break, and continue in local expression have the never type:

fn sample4(a: i64, b: [i64], c: [i64]) -> String {
let x: [i64] = if (0 < a && a < b.length) {
b // type of outer then branch: [i64]

} else {
if (0 < a && a < c.length) {
c // type of inner then branch: [i64]

} else {
return "No" // type of "No" matches type of function result

// type of inner else branch: !
} // type of inner if-else / outer else branch: [i64]

}; // type of outer if-else: [i64]
x[0] = a;
"Yes"

}

8.4.1 Soundness and the Never Type

Even mutable storage locations may safely take the type !. All locations (variables, array cells, struct fields)
as well as enum carried values must be initialized upon creation. The type enforces that evaluation of an
expression with this type never completes. This means that construction of structs with never-typed fields
and enums with never-typed carried data never happens at run time. No instances of such types ever exist.
Similarly, never-type variables are never bound at run time. Thus, while rules T-assign and T-never allow
a mutable never-typed location to be treated as a mutable any-typed location, initialization and all and
assignments to that location are unreachable, due to the meaning of the never type.
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9 Core Library

The Roost core library provides a small set of functions for I/O operations, basic type conversions, and
other system-level functionality. These functions are in scope for all programs.

// Read one byte from standard input, zero-extend to i64.
extern fn readbyte() -> i64;
// Write the low order byte of an i64 to standard output.
extern fn writebyte(byte: i64) -> ();

// Read one line from standard input, up to the next newline or EOF.
extern fn readln() -> String;

// Print string to standard output.
extern fn print(string: String) -> ();
// Print string to standard output, followed by a newline.
extern fn println(string: String) -> ();
// Print integer to standard output, in decimal (base 10) notation.
extern fn printi64(integer: i64) -> ();

// Parse the decimal (base 10) notation of an integer from a string
// and return the value as i64, or return the fallback value if
// parsing fails.
extern fn parsei64(string: String, fallback: i64) -> i64;
// Generate and return a string with the decimal (base 10) notation of
// an i64 value.
extern fn dumpi64(integer: i64) -> String;

// Return the number of characters in the given string.
extern fn string_length(string: String) -> i64;
// Produce a new string by concatenating the two given strings.
extern fn string_concat(left: String, right: String) -> String;

// Return a random number in the range 0 through bound-1, inclusive.
extern fn random(bound: i64) -> i64;

// Terminate the program with the given exit code.
extern fn exit(code: i64) -> !;
// If the given condition is false, terminate with message.
extern fn assert(condition: bool, message: String) -> ();
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TypeParams ::= ‘<’ TypeId ( ‘,’ TypeId )∗ ‘>’

TypeArgs ::= ‘<’ Type ( ‘,’ Type )∗ ‘>’

Item ::= . . . | Module | TypeAlias | Use

Module ::= ‘mod’ Id ‘{’ ( ‘pub’? Item )∗ ‘}’

TypeAlias ::= ‘type’ TypeId TypeParams? ‘=’ Type ‘;’

Use ::= ‘use’ Path TypeId ‘;’
| ‘use’ Path Id ‘;’
| ‘use’ Path ‘*’ ‘;’

Path ::= ‘::’ | Path? Id ‘::’ | Path? TypeId ‘::’

Pattern ::= . . .

| TypeId ‘{’ ( Id ‘:’ Pattern ‘,’ )∗ ( Id ‘:’ Pattern )? ‘}’

Figure 5: Syntax of standard extensions to the Roost language for generics and modules .

10 Standard Extensions

For improved language ergonomics, the Roost language defines standard extensions beyond the core language.
Figure 5 summarizes the extended syntax by showing additions to the core language grammar defined in
Figure 1.

10.1 Generic Types

The Roost type system supports parametric polymorphic types, more commonly known as generic types.
Structure definitions, enumeration definitions, and function definitions may introduce generic type parameters
that may be used as types within the bodies of those definitions. ConstructionCalling generically typed
structures or enumerations and calling generically typed functions instantiates type arguments in place of
these formal type parameters.

10.1.1 Generic Structure and Enumeration Definitions

This typing extension supports type parameters on structure definitions and allows types within the structure
definition to reference these type parameters in type annotations. For example, generalizing the integer linked
list structure defined earlier:

enum List<T> {
Link(Node<T>),
Empty

}
struct Node<T> {
value: T,
rest: List<T>,

}

The above structure definition defines List<T> and Node<T> types for representing linked lists with elements
of any consistent type, T. After generalizing this definition, the only other necessary changes to code using the
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earlier i64-specific definitions are to change any uses of List and Node in type annotations to List<i64> and
Node<i64>. Changes to constructors are not needed: The type checker infers an appropriate type argument
for T whenever constructing List or Node.

10.1.2 Generic Function Definitions

Function definitions may also introduce type parameters in order to make function behavior generic over
types. The function parameter types, result type, and any types in the function body may reference this the
function’s type parameters. For example, for any type T, the following function takes an element of type T
and a ListNode that carries the same element type T and returns a new ListNode with the new element
prepended to the beginning of the list:

fn cons<T>(elem: T, list: List<T>) -> List<T> {
Link(Node { value: elem, rest: list })

}

Calls to functions with type parameters instantiate the type parameters with type arguments implicitly.
The type arguments are inferred from the types of the argument expressions. For example, in the following
code, T is inferred to be type str for this particular call to cons:

let names: List<String> = ...;
let nickname: String = ...;
names = cons(nickname, names); // Type checker infers <T=String> for this call.

10.1.3 Generic Type System Definition

As the course did not come close to exploring this feature, formal definitions and informal descriptions for
the generic type system were not added.

10.2 Module System and Abstract Types

As the course did not come close to exploring this feature, definitions and descriptions for the module system
and abstract types were not added.

11 Document Status

• Language Version: 0.2.0

• Document Revision: 10

The language version (0.2.0) indicates the version of language; it changes when an aspect of the language
itself is updated, e.g., to add or change a feature. The document revision indicates the version of this
document; it changes whenever this document is changed, e.g., to fix a typo, add further description, etc.
A change to the document does not imply a change to the language. A change to the language requires a
change to the document.

11.1 Change Log (Document Revisions)

1. <2021-04-20 Tue> Initial CS 301 Spring 2021 version of this document published 20 April 2021.
Roost version 0.2.0 is a breaking update with respect to the (retroactively re-versioned) Roost 0.1.0
definition from CS 301 Spring 2019.

2. <2021-04-24 Sat> Fixed typo, added discussion of type soundness for the never type, added introductory
text about generic types.
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3. <2021-04-26 Mon> Remove explicit .length form from grammar to match Section 4.3 and the
reference implementation, which treat it as a field access expression.

4. <2021-05-05 Wed> Fix typo in the Structure production of Figure 1.

5. <2021-05-08 Sat> Add typing rules for match and patterns. Fix minor related type system typos.

6. <2021-05-10 Mon> Add core library.

7. <2021-05-10 Mon> Update Rule T-mut-field to ensure that only struct fields (and not array lengths)
are mutable.

8. <2021-05-12 Wed> Remove readend from the core library, change readbyte to zero-extend.

9. <2021-05-27 Thu> Fix typos with block expressions as subexpressions of binary expressions. (Change
from old syntax to current syntax.)

10. <2021-06-01 Tue> Close off extensions that the course never had time to reach.

11.2 Pending Additions

As the course did not reach close to these items, they were never added:

• Full documentation for the standard extensions for generic types and modules and abstract types .

• Discussion of the extern ABI.

• A standard library (extending the minimal core library).

23


	Overview
	Core Language Highlights
	Standard Extensions
	Acknowledgments

	Lexical Structure
	Keywords
	Identifiers
	Comments
	Literals
	Tokenization

	Program Structure and Syntax
	Data Types
	Unit, Booleans, Integers
	Strings
	Arrays
	Structure Types (struct)
	Enumeration Types (enum)
	Recursive Type Definitions
	Storage and Variables

	Functions
	Function Definitions
	Function Calls
	External Functions

	Expressions
	Blocks, Bindings, Assignments, Effects
	Control-Flow
	Pattern Matching Expressions (match)
	Simple Expressions
	Operators

	Scope
	Nested Scopes
	Flat and Type-Dependent Scopes

	Type System
	Syntactic Sugar
	Type System Meta-Syntax and Environments
	Core Language Type System
	The Never Type (!)

	Core Library
	Standard Extensions
	push0 g 0 GpopGeneric Typeslimepush0 g 0 Gpoptowidthheightdepth
	push0 g 0 GpopModule System and Abstract TypesGoldenrodpush0 g 0 Gpoptowidthheightdepth

	Document Status
	Change Log (Document Revisions)
	Pending Additions


