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To start the course we build a compiler that translates programs in the Tiny calculator language to
x86 machine code. This activity guides you to build the compiler’s front end, including lexical analysis,
syntax analysis, and semantic analysis. A later activity will build the back end : intermediate representation,
optimization, and code generation.

1.1 Goals

� Preview course concepts by building a working compiler at accessible scale, with guidance. Concept
exposure (not concept mastery) is the goal of this activity.

� Start learning Scala and associated tools.

� Try working with potential project teammates or tutorial group members.

1.2 Instructions

• Complete this activity in groups of 3. Choose teammates with whom you have not worked before.
Include at least one CS 251 alum per group if possible.

• Aim for a big-picture view of each compiler stage. Do not worry if details are fuzzy: guess,
follow intuition, experiment to see what works. Check in with me if you are lost or stumped.

2 Setup

Use a terminal in Linux, macOS, or WSL (Windows Subsystem for Linux).
WSL info: https://cs.wellesley.edu/~cs301/s21/tools/#wsl.

1. Install and configure IntelliJ, the Scala Plugin, and a Java 11 JDK with these steps:
https://cs.wellesley.edu/~cs301/s21/tools/#intellij-idea

2. Clone the starter project:

(a) Open IntelliJ and choose New > Project from Version Control from the menu.

(b) Enter the URL https://github.com/wellesleycs301s21t4/tiny-front.git

(c) Click Clone.

(d) When prompted about whether to trust and open the BSP project, click Trust Project.

(e) IntelliJ should now clone and automatically build the project. Wait for this to finish: watch
progress bars at the bottom of the IntelliJ window.

3. Configure IntelliJ and a terminal session when IntelliJ has finished importing and building:

(a) Open the IntelliJ preferences/settings from the menu (IntelliJ > Preferences or File > Settings,
varies by OS).
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i. In Build, Execution, Deployment > Compiler, enable Build project automatically.
ii. Close the preferences/settings.

(b) Open a terminal, cd to the tiny-front project directory if needed, and run the command source
env.sh. This produces wrapper scripts for the Tiny compiler and interpreter and put them on
the PATH.

4. Find files in the upper left Project pane:

(a) Find source code files in tinyc/src/tiny.

(b) Find test files in test.

3 Implementation Language

This course uses Scala (https://scala-lang.org) as the main implementation language for all projects.
Scala is a statically typed language with both functional and object-oriented features. It is typically compiled
to run on the JVM (Java Virtual Machine) and is interoperable with Java. Compared to Java, it introduces
several niceties and eliminates several annoyances.

CS 251 alums will see many features similar to Standard ML that are well-suited to many of the compiler
tasks we will implement. If you have not had CS 251, the Java-like side of Scala should be quick to pick up.
You will learn to use some of the other features over time. Do note that Scala is a large language with many
parts; we typically stick to a relatively small subset of those parts that are clean and easy to comprehend.

Exercise 1. In the tiny project in IntelliJ IDEA, open several Scala files, skim some code, and note at
least 5 substantive differences between Scala and Java.

Let’s check in with the whole class here to share tips about Scala.

4 Compiler Architecture

Open Compiler.scala. This file contains the top-level logic of the Tiny compiler. Each compiler stage
referenced here is defined in a separate file of the same name. AST.scala and IR.scala define data structures
to represent Tiny programs in the compiler; the remaining files define functions that produce or consume
these data structures.

Exercise 2. Read the compiler’s main function. Take a look around. Skim header comments in each of
the Scala files. Is this the compiler structure you expect? Note any surprises or questions.
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Consider that programs are just data that are manipulated, computed upon, transformed, and so on. Like
other data, program representation is independent from program meaning. This compiler implementation will
deal with the same program represented as a source code string, a stream of lexical tokens, a tree capturing
syntactic structure, graphs of control-flow structure, an assembly code string, and a machine code executable.

5 The Tiny Language

Our source language, Tiny1, is a small calculator language. Informally, Tiny works as you expect. Both the
syntax – the structure of programs – and the semantics – the meaning of this structure – closely resemble
those of many familiar programming languages. Tiny includes: parenthesized addition expressions; an input
expression that consumes and yields the next number value from user input; mutable variables; variable
assignment statements; and print statements. Statements and expressions are evaluated eagerly left to right.
To simplify parsing, all keywords and symbols (including parentheses) must be separated by spaces.

Exercise 3. The following Tiny program takes two integer inputs i1 and i2 from the user and prints
two numbers computed based on these inputs.

x = ( 4 + input ) ;
y = input ;
print ( ( 7 ) + ( y + y ) ) ;
print ( ( x + ( y + 3 ) ) + 97 ) ;

Execute this program manually with the inputs i1 = 6 and i2 = 2, in order. Show the values printed.

Exercise 4. Write a Tiny program that takes 3 inputs i1, i2, and i3 and prints the number equivalent
to the arithmetic expression 2(i1 + i3) + i2 + 7. Also save it as: src/test/tiny/ex4.tiny

1Tiny stands for Treetop Investigators Needlessly Yammering, Truly Inimitable Northern Yew, or whatever else you prefer
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Asking you to execute and author Tiny programs without much of a definition of the language is a bit
devious, but your informed guesses are most likely correct. With an intuitive informal understanding of the
language in hand, we now define the Tiny syntax and semantics more formally.

6 Tiny Syntax Definition

Syntax is the structure of a language. It determines what symbols or words are used to express programs in
the language, but more importantly, how those symbols or words can fit together to build larger linguistic
structures, much like we could define individual words, general parts of speech, and larger grammatical
structures in human languages. Syntax does not define meaning of structures, i.e., the computation they
describe. That is the job of semantics, which we will cover later.

The syntax of Tiny is given by the following grammar :

P ::= S∗

S ::= V ‘=’ E ‘;’ | ‘print’ E ‘;’
E ::= N | V | ‘(’ E ‘+’ E ‘)’ | ‘input’ | ‘(’ E ‘)’

V ::= [a-zA-Z]+

N ::= [0-9]+

A grammar describes the set of strings that are valid in a language by giving a structural definition in
terms of two kinds of symbols:

1. Terminal symbols are concrete tokens appearing literally in strings of the language.
Terminals are written in single-quoted monospace font, e.g., ‘print’.

2. Nonterminal symbols represent abstract structures with one or more specific forms called productions.
Each production is a sequence of symbols defining one form of the nonterminal more specifically.
Nonterminals are written as upper-case letters in italic serif font, e.g., “S”. The productions of a
nonterminal are given by writing the nonterminal symbol to the left of “::=” with its one or more
productions to the right, separated by “|”.
We use a few shorthand notations in productions: the superscript symbol “∗” indicates that the preceding
item may appear zero or more times contiguously; superscript “+” (distinct from “+”) indicates one or
more; the notation “[a-zA-Z]” indicates any single letter; “[0-9]” indicates any single digit.

A grammar is a recursive definition. The Tiny grammar is read as follows:

• A program, P , is a sequence of zero or more statements, S.

• A statement, S, is one of:

– an assignment, composed of a variable name, V , followed by “ = ” followed by an expression, E,
followed by “ ;”; or

– a print, composed of “print ” followed by an expression, E, followed by “ ;”.

• An expression, E, is one of:

– a number, N , composed of one or more digits;
– a variable name, V , composed of one or more letters (but not the sequences print or input);
– an addition expression, composed of “( ” followed by an expression, E1, followed by “ + ” followed

by an expression, E2, followed by “ )”;
– a user input expression, composed of “input”; or
– a parenthesized expression, composed of “( ” followed by an expression, E, followed by “ )”.

• A variable name, V , is a sequence of one or more letters (except the sequences input or print).

• A natural number, N , is a sequence of one or more digits.
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7 From Characters to Abstract Syntax Trees

The first major step in a compiler is to extract the abstract syntax of the source program (i.e., its larger
hierarchical structure – a tree, in fact) from its concrete syntax (i.e., the flat linear string of characters
comprising the source code) according to the rules of the grammar. For simplicity, we break this process into
two steps:

1. Lexical analysis or scanning groups individual characters into meaningful lexical tokens. (This will be
the focus of our first tutorial meeting.) The syntax of Tiny is designed to make lexical analysis trivial:
all tokens are delineated by spaces.

2. Syntactic analysis or parsing uses the grammar to extract a hierarchical structure, called an abstract
syntax tree, from the stream of lexical tokens.

7.1 Parsing Programs as Trees

The grammar allows us to understand the hierarchical syntactic structure encoded by a stream of tokens: a
tree composed of nodes in the shapes given by productions of nonterminals in the grammar. The tree’s inner
nodes and root correspond to nonterminals in the grammar; productions determine the children of nodes;
lexical tokens are leaves. For example, this tree shows the derivation of a program in the Tiny grammar:

The process of recovering a syntax tree starting from only its leaves, the stream of lexical tokens, is called
parsing. There are many ways to parse a stream of lexical tokens. We start with visual intuition for one
bottom-up approach.

Informally, we read the stream of tokens from left to right, treating each token as a leaf and gradually
building a tree above the leaves. Based on the next token and the trees constructed so far, we may: shift the
token from unconsumed input to become its own tiny tree in the construction area; or reduce one or more
trees on the right end to become children of a new larger tree. Eventually, this should yield a single P tree.

Some subtrees can appear in multiple contexts. For example, variable names appear both on the left
hand side of assignment statements as well as in expressions. Informally, we decide how to treat them by
understanding what we expect to see next. For example, an expression can never appear at the start of a
statement in Tiny. While it makes sense to reduce the first x to a V tree, it would not make sense to reduce
it to an E tree. For now, we follow intuition rather than developing a precise algorithm for this style of
parsing. Our second and third tutorial meetings explore top-down and bottom-up parsing in detail.
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Exercise 5. Complete the parse tree for the following Tiny program step by step from left to right. The
next unconsumed token is shown in a pentagon. The subtrees we have so far are: print, (, E, +, and E.

7.2 Abstract Syntax Trees

The parse tree shown in Section 7.1 makes the program’s concrete syntactical structure clearer. While all
tokens must be considered during parsing, many become superfluous once parsing is complete. At this point,
we care only that the program (P ) has the following structure:

• The first statement (S) is an assignment statement where:

– The variable (V ) has variable name x.

– The expression (E) is an addition expression where:

∗ The left expression (E) is an input expression.
∗ The right expression (E) is a literal number (N) where the number value is 2.

• The second statement (S) is a print statement where:

– The expression (E) is an addition expression where:

∗ The left expression (E) is a variable (V ) where the variable name is x.
∗ The right expression (E) is a variable (V ) where the variable name is x.

We could draw this structure more simply as an abstract syntax tree (AST), collapsing unimportant details
of the grammar derivation, and omitting the concrete syntax that makes it feasible to write programs as text.
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Exercise 6. Draw an AST for the program you parsed in Exercise 5.

7.3 AST Representation

Before implementing a parser, we need a target representation for abstract syntax trees (ASTs). The file
AST.scala defines the abstract syntax of Tiny as a hierarchy of case classes that can be assembled to
create a data structure representing a Tiny program. Seq is a generic ordered sequence collection type, so
Seq[Stmt] is the type of an ordered sequence of Stmt elements.

Exercise 7. Sketch the class hierarchy defined in AST.scala. How does it relate to the Tiny grammar?

Scala’s case classes support constructing instances without the new keyword. (For CS 251 alums, case
classes are much like constructors of ML algebraic datatypes. They support pattern-matching.) To construct
a print statement carrying the expression 301, we just write Print(Num(301)), which results in a Print
object whose expr is a Num object whose value is 301.

Exercise 8. Using the AST types defined in AST.scala, write a Scala expression that constructs a
representation of the AST you drew in Exercise 6 for the program from Exercise 5.
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8 Implementing Parsing

Now it is time to implement what you have learned so far. Exercises in this section guide you through
completing a parser for the Tiny compiler starting from a partially implementation in Parse.scala.

8.1 Scanner (Lexer)

For lexical analysis (a.k.a. scanning), we use a java.util.Scanner to consume the program source code and
break it up into lexical tokens. The Scanner has a few methods we use:

• hasNext(p) takes a String describing a simple pattern. Its return value indicates whether or not the
pattern p describes the next token in the source code input. These patterns are regular expressions,
which you may have used before. More in the upcoming assignment!

• next(p) consumes the next token, using the pattern p to define what part of the input comprises the
token, and returns that token. next(b) assumes hasNext(p) is true (so always check first).

• There are also integer-specific versions hasNextInt() and nextInt() that check for and get the next
integer encoded by the source code, respectively.

By default, Scanner distinguishes the boundaries of tokens by whitespace, matching the syntax of Tiny.
When specifying patterns for tokens, some characters have special meaning. Parentheses, plus, and star must
be escaped with "\\" if you want the literal character: "\\(", "\\+", "\\*".

Exercise 9. Skim Parse.scala to see how provided code uses the Scanner. What pattern gets used
for recognizing variable-name tokens?

Next week, the first tutorial readings, assignment, and meetings explore the principles behind the Scanner
as well as more sophisticated techniques for lexical analysis.

8.2 Recursive Descent Parser

Parse.scala has the framework of a recursive descent parser, one of the more intuitive ways to structure
a manually implemented parser for a simple grammar. The provided parser handles a subset of the Tiny
language: assignment statements, integer literal expressions, and input expressions. Your job is to extend it
to handle the other types of statements and expressions.

Exercise 10. Write a Tiny program using the subset of the Tiny language supported by the provided
parser and run the compiler. It should print the AST it has parsed. (Currently, it does nothing more.)

IntelliJ IDEA compiles the Scala code (i.e., compile the compiler. . . ) incrementally each time you
save. To run the compiler on a test program in src/test/tiny/simple.tiny:

cd tiny-front
./tinyc src/test/tiny/simple.tiny
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Section 7.1 parsed Tiny programs by hand using a bottom-up approach: we let the tokens drive parsing
and gradually build the parse tree from the leaves to the root. In contrast, recursive descent parsing is a
top-down approach: when parsing a program, the parser knows that a program is composed of statements,
so it first tries to parse a statement; when parsing a statement, the parser knows there are two kinds of
statements, so it examines the first available token to distinguish which kind of statement to parse, then
parses its parts; and so on. Reading the parser code is the most effective way to understand this model.

Exercise 11. Read Parse.scala. Consider only the subset of the grammar corresponding to the cases
the parser support so far. How do the provided functions in Parse.scala correspond to the grammar
for Tiny? How do the different branches in each method correspond to the grammar? Make sure to
understand these points before starting the following exercises.

Exercise 12. Extend the parser to handle print statements in parseStmt. Write a couple simple
programs to test your extension. Why must the parser check for the print case first before the considering
the assignment case (and not the opposite)?

Exercise 13. Extend the parser to handle parenthesized addition expressions in parseExpr. Write a
few simple programs to test your extension. Hint: this should finally make your recursive descent parser
live up to its name. How is the parser’s use of recursion related to the grammar?
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Exercise 14. (Optional) Extend the parser to handle “extra parentheses” expressions (the last produc-
tion of E in the grammar) in parseExpr. Before coding, think carefully about how you will distinguish
these from addition expressions. Write a few simple programs to test your extension.

9 Tiny Semantics Definition

The semantics of a programming language describes what syntactic structures in the language mean or, in
other words, how to evaluate them. So far, our definitions of the Tiny semantics are vague, appealing to
intuition and familiarity with other languages. We next explore a provided reference interpreter for Tiny
programs to understand Tiny semantics more precisely. If you are curious about specifying the semantics of
Tiny formally, read the optional Appendix B.

9.1 Tiny Reference Interpreter

An interpreter reads in a program’s source code and executes or evaluates the program. An interpreter would
be better named an executor or evaluator, just as a compiler would be better named a translator, but history
chose the interpreter and compiler terms and they are well-established in common usage.

Why is a Tiny interpreter relevant to our goal to build a Tiny compiler? Defining how to interpret
(execute/evaluate) an arbitrary program directly – i.e., giving an operational semantics of the language –
can often be more straightforward than defining how to compile (translate) an arbitrary program to another
language – i.e., giving a denotational semantics of the language. In preparation to build a Tiny compiler,
the Tiny interpreter serves as a fairly precise, although informal, definition of the Tiny language semantics.
Later in the course (or optionally in Appendix B), we encounter more formal ways of specifying semantics.

Exercise 15. Read the file Interpreter.scala, which defines a full interpreter for the Tiny language.
How does the code structure relate to the AST data structure and the grammar of Tiny?

Exercise 16. How does the interpreter track the values of variables as it evaluates a program?
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Exercise 17. Briefly, summarize how the interpreter works overall.

Exercise 18. OK, we can’t just let it sit there unused. Run the interpreter on some of your Tiny
programs. For example: ./tiny src/test/tiny/this-program-is.tiny

10 Semantic Analysis

Even in a simple language like Tiny, there exist syntactically well-formed programs that are not semantically
valid. In other words, some programs look reasonable but have no reasonable meaning. The evaluation of
such programs may – or in the case of Tiny, definitely will – result in errors.

10.1 A Notion of Scope

In Tiny, consider the issue of variable definitions and variable uses.

Exercise 19. Consider the following Tiny program (also in src/test/tiny/error.tiny).

y = 7 ;
print y ;
print x ;
x = ( input + y ) ;

Is this program syntactically valid? (Does it parse?)
Does this program make sense intuitively?
How does it behave when evaluated with the Tiny interpreter?

This program has a semantic problem: it attempts to use the value of variable x before it has defined a
value for x. We could define that all variables are implicitly initialized to hold 0 at the start of the program.
However, this is arguably not the most intuitive semantics and it is definitely not the semantics implemented
by the Tiny reference interpreter. (It raises a runtime error at the point where a program attempts to use an
undefined variable.) In Tiny, variables must be defined before they can be used.

Similar issues arise in most any programming language with names: a syntactically valid program may
contain semantically invalid uses of names. More elaborate programming languages involve other kinds of
semantic errors, such as type errors, array bounds errors, and more.
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The dynamic mindset, which guides the design of languages like Python, tends to suggest that semantic
errors should be raised only if the erroneous operation is actually encountered at run time. In contrast,
the static mindset, which guides much of the design of languages like Scala, tends to suggest that potential
semantic errors should be raised before the program ever runs and should, furthermore, prevent the program
from executing at all, to avoid potentially encountering semantic errors during execution/evaluation.

Exercise 20. What are the strengths and weaknesses of the dynamic and static approaches toward
semantic errors? Consider your own experiences. Consider different applications.

10.2 Resolving Names and Checking Definitions

The Tiny interpreter takes a dynamic approach to handling semantic errors. The Tiny compiler should take
a static approach, introducing compile-time checks to ensure that programs use only defined variables. The
variable-use checker or scope checker for Tiny is quite straightforward thanks to the linear nature of Tiny
programs. (Tiny has no control flow branching.)

Exercise 21. In Compiler.scala, uncomment the call to ScopeCheck in frontend. Complete the
partially implemented scope checker in ScopeCheck.scala. Test your work on the broken program from
Exercise 19. Note that Set has a contains method. You can report a scope error by throw-ing a new
ScopeError.

11 Reflections

We have now defined the syntax and semantics of Tiny, transformed a string of characters into a stream
of lexical tokens, parsed the stream of lexical tokens to derive an abstract syntax tree, and analyzed the
abstract syntax tree to determine if the program is semantically valid. We used several tools, ranging from
our implementation language, Scala, to formal devices like grammars, ASTs, and operational semantics. The
first half of the course (6 tutorial meetings) explores the topics in this activity in more depth.

Exercise 22. Note your favorite “aha!” moments, points of remaining confusion/curiosity, etc.
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A Extending the Language

Exercise 23. (Optional) Extend the Tiny Language with a multiplication expression. Syntactically, it
is identical to the addition expression except that + is replaced by *. First consider how you will represent
multiplication in the AST, then extend each phase of the compiler with support for multiplication.

Note that addition and multiplication will have many similarities. Simply adding a new Times case
class may result in significant code duplication through the compiler where addition and multiplication
may be treated similarly or identically. Although it will require changing some existing code, it may be
beneficial to consider designing a BinaryExpr that carries two subexpressions and an operator.

B Big-Step Operational Semantics for Tiny

Following the formal notation in this appendix is beneficial, but not required. If you get lost in
the notation, do not spend too long in this section: read the interpreter (Section 9.1), then skip to Section 10.

An operational semantics defines a language’s meaning by describing how to evaluate programs in terms
of an abstract machine. A big-step semantics shows this evaluation all at once rather than step by step. Let’s
define syntax and evaluation rules for a Tiny abstract machine.

B.1 Notation for a Tiny Abstract Machine

Our abstract Tiny machine consumes Tiny programs written in concrete syntax. The rules of our machine
use syntactic variables to extract subparts of Tiny program syntax like a magical parser: The syntactic
variable p represents a program (anything of the form P ); s represents a statement (S); e represents an
expression (E); x represents a variable name (V ); n represents a number (N). We use these syntactic
variables instead of the nonterminals E, etc., since we will use them to capture a specific expression of the
form E, rather than the class of all elements of the form E.

To model Tiny variables, our machine tracks a dynamic environment, written env, that is a map from
variable name to number value. Program evaluation begins with an empty environment, ∅. The following
notations describe environment manipulations:

• env[x 7→ n ] constructs a new environment identical to env, except that variable x maps to value n .

• env(x ) yields the value, n , to which x maps in env; it is valid only if such a mapping exists, i.e.,
x ∈ env.

To model user inputs to the program, our machine tracks a list of dynamic inputs, written in, which we
assume is pre-populated with all inputs at the start of evaluation.2 The syntax of an inputs list, in, is simply
a space separated listed of numbers, e.g., 240 251 301. Outputs are produced in the same form.

B.2 Evaluation Rules for a Tiny Abstract Machine

The evaluation rules in Figure 1 define how the Tiny abstract machine works. The rules are organized under
three judgments, each of which appears in a box . Each judgment has one or more inference rules that
determine the conditions under which a judgment can be satisfied. Each rule is of the form:

rule name
premise1 . . . premisen

conclusion

If all premises of a rule hold, then the conclusion holds. Within a rule, all occurrences of a given syntactic
variables (such as env or e) refer to the same syntactic structure.

2Actually, there’s no reason that the implementation cannot prompt the user for these inputs interactively through the
program execution. The way that the formal system underlying our operational semantics works, we can do the moral equivalent
of guessing exactly the right inputs ahead of time automatically.
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env, in, out,p ↓ out′ Evaluation rules for programs p.

empty

env, in, out, ↓ out

statement
env, in, out, s ↓ env′, in′, out′ env′, in′, out′,p ↓ out′′

env, in, out, s p ↓ out′′

env, in, out, s ↓ env′, in′, out′ Evaluation rules for statements s.

assign
env, in, e ↓ in′,n

env, in, out,x = e ; ↓ env[x 7→ n ], in′, out

print
env, in, e ↓ in′,n

env, in, out, print e ; ↓ env, in′, out n

env, in, e ↓ in′,n Evaluation rules for expressions e .

num

env, in,n ↓ in,n

input

env,n in, input ↓ in,n

plus
env, in0, e1 ↓ in1,n1 env, in1, e2 ↓ in2,n2

env, in0, ( e1 + e2 ) ↓ in2,n1 + n2

var
x ∈ env

env, in,x ↓ in, env(x )

Figure 1: Operational semantics for Tiny.

These judgments for the Tiny operational semantics can be understood somewhat like functions, where
the elements to the left of ↓ are arguments and the elements to the right are results. The rules of each
judgment can be understood somewhat like different cases in their judgment function. Let’s jump straight
into the individual judgments and rules, as this is the quickest way to understand the notation.

Programs. The judgment env, in, out,p ↓ out′ defines the complete evaluation of a program p under
initial dynamic environment, , available inputs, in, and existing outputs out. Rule empty indicates that
the empty program (a program with no statements) evaluates to completion under any environment and
inputs, producing the existing outputs. Since there are no premises, this rule is an axiom. Rule statement
indicates that any nonempty program evaluates to completion under initial environment env, inputs in, and
outputs out, if its first statement, s, produces new environment env′, remaining inputs in′, and outputs out′,
when evaluated under the initial environment, inputs, and outputs and the rest of the program evaluates
to completion under the environment, env′, remaining inputs, in′, and existing outputs, out′, produced by
evaluating the first statement.

Statements. The judgment env, in, out, s ↓ env′, in′, out′ defines the evaluation of a statement, s . Notice
that there is one rule for each kind of statement. Rule assign indicates that evaluating an assignment
statement x = e ; evaluates expression e under the initial environment environment and available inputs,
using judgment env, in, e ↓ in′,n , and produces a new environment that extends the initial environment env
by mapping x to n , the result of evaluating e . Whatever inputs, in′, remained after evaluating e remain
after evaluating s. Assignment produces no new outputs. Rule print is similar, but does not change the
environment. Instead it produces one new output: the number n , resulting from evaluating e .

Expressions. The judgment env, in, e ↓ in′,n defines the evaluation of an expression, e . There is one
rule for each kind of expression. Rule num indicates that a number, n , evaluates to itself, without consuming
inputs. Rule input indicates that an input expression evaluates to the first remaining input, n , and removes
this input from the remaining inputs. Notice that this rule cannot be applied if there are no remaining
inputs. Rule plus indicates that an addition expression evaluates the left expression, e1, (which may consume
inputs), then the right expression, e2, (which may also consume inputs) and yields the arithmetic sum of the
two results, with any inputs not consumed by evaluation of the subexpressions also remaining after evaluation
of the addition expression. Rule var indicates that a use of variable x evaluates to the number to which x
maps in the environment env. Notice that this rule applies only if such a mapping exists in env.
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