
CS 301 Spring 2021 T4
Class Assignment
20 April

Context-Free Grammars

1 Plan

Lexical
Analysis

Syntax
Analysis

Semantic
Analysis

Intermediate
Code

Generation

Machine-
Independent
Optimization

Code
Generation

Source
Program

Target
Program

This assignment explores context-free grammars, the formal tool used to specify programming language
syntax and the foundation for parsing. There are two major families of parsing techniques: top-down and
bottom-up. This term, we will not cover top-down (a.k.a., predictive) parsing (and LL grammars) in depth,
but additional readings and exercises are included here if you are curious to learn about them. Our next
tutorial will focus on bottom-up parsing and LR/LALR grammars.

2 Readings

• EC 3.1–3.2
Alternative: Dragon 4.1.1–4.1.2, 4.2–4.2.5, 4.2.7, 4.3–4.3.2

• Skim EC 3.3.0, 3.3.2
Alternative: Skim Dragon 4.4–4.4.1

• Extra Depth:

– Top-down parsing: EC 3.3 / Dragon 4.3.3–4.3.4, 4.4–4.4.4

– Additional detail on grammars, top-down parsing, error recovery: all sections Dragon 4.1–4.4

3 Exercises

1. Dragon Exercise 4.2.1

2. Dragon Exercise 4.2.3 (a) — (e)

3. Tiny Compiler Front End Sections 5-8 / Exercises 4-14
https://cs.wellesley.edu/~cs301/s21/project/tiny/tiny-front.pdf

4. Extra Depth: Dragon Exercise 4.3.1

5. Extra Depth: Consider the following grammar:

S → a S b S | b S a S | ε

(a) Show that the grammar is ambiguous by constructing two different rightmost derivations for some
string.

(b) Construct the corresponding parse trees for this string.

(c) Extra Depth: Write an unambiguous grammar that describes the same language. (There is
no algorithm to remove ambiguiuty from a grammar. I suggest first trying to understand the
language for the original grammar and then constructing a new unambiguous CFG from scratch
that accepts the same language.)

1

https://cs.wellesley.edu/~cs301/s21/project/tiny/tiny-front.pdf

6. Extra Depth: Consider the following grammar:

S → B C z

B → x B | D
C → u v | u
D → y D | ε

(a) Is this grammar LL(1)? Explain why (not). If not, modify the grammar to be LL(1) before
proceeding.

(b) Compute the first and follow sets for the (possibly modified) grammar.

(c) Construct the LL(1) parsing table.
NOTE: There is a typo in the Dragon book in the description of how to construct
the parsing table. On page 224, step 1 of Algorithm 4.31 should refer to first(α), and not
first(A). This has been fixed in some printings (international paperback?) but not all.

(d) Show the steps taken to parse xxyuz with your table. (Use Dragon Fig. 4.21 as an example of
how to show the parser’s progress.)

7. Extra Depth: Consider the following grammar for statements:

Stmt → if E then Stmt StmtTail

| while E Stmt

| { List }
| S

StmtTail → else Stmt

| ε

List → Stmt ListTail

ListTail → ; List

| ε

Unlike Java (and like ML), semicolons separate consecutive statements. You can assume E and S are
terminals that represent other expression and statement forms that we do not currently care about.
If we resolve the typical conflict regarding expansion of the optional else part of an if statement by
preferring to consume an else from the input whenever we see one, we can build a predictive parser for
this grammar.

(a) Build the LL(1) predictive parser table for this grammar.

(b) Using Figure 4.21 in the Dragon book as a model, show the steps taken by your parser on input:

if E then S else while E { S }

(c) Extra Depth: Use the techniques outlined in Dragon 4.4.5 to add error-correcting rules to your
table.

(d) Extra Depth: Describe the behavior of your parser on the following two inputs:

i. if E then S ; if E then S }
ii. while E { S ; if E S ; }

2

	Plan
	Readings
	Exercises

