
CS 301 Spring 2021 T4
Class Assignment
11 May

Intermediate Code, Method Dispatch

1 Plan

Lexical
Analysis

Syntax
Analysis

Semantic
Analysis

Intermediate
Code

Generation

Machine-
Independent
Optimization

Code
Generation

Source
Program

Target
Program

This week we move beyond the front end of the compiler to translate ASTs to intermediate code and
implement dynamic method dispatch.

• The first topic is intermediate code generation, the compiler phase that converts the high-level, hi-
erarchical AST representation into a low-level, flat three-address-code representation. This lowering
or flattening brings our program representation closer to a realistic machine model and provides a
convenient platform for optimization and machine code generation, our topics for the next few weeks.

2 Readings

Intermediate representation:

• TAC specification, attached.

• Dragon 6.2 – 6.2.1

• EC 5.3 (Skim as needed)

3 Exercises

1. (Optional) As you approach the translation of AST to three-address code (TAC), you may find it
helpful to revisit the Tiny compiler back end as a small-scale example.
https://cs.wellesley.edu/~cs301/project/tiny/

2. This problem explores how to translate a program represented as an AST into three-address code
(TAC), an intermediate representation of programs that we will use for optimization and translation to
machine code. A specification of the TAC instruction set for this question is on the web site project
page. As an example, consider the following while loop and its translation:

n = 0;
while (n < 10) {

n = n + 1;
}

n = 0
label test
t1 = n < 10
t2 = not t1
cjump t2 end
label body
n = n + 1
jump test
label end

To leave the AST behind and move toward optimization and code generation, the compiler will translate
programs to TAC. Here, we develop a definition of this step as a syntax-directed translation, meaning
we give a function from syntactic forms of the source language to semantically sequences of TAC

1

https://cs.wellesley.edu/~cs301/project/tiny/

instructions. Your next project phase will start with a more concrete implementation of this translation,
working from your AST.

Note that the operands of each TAC instruction are either program variable names (e.g., n), temporary
variable names introduced during translation (e.g., t2, t3), or constants (e.g., 0, 10, 1). Branch
instructions refer to label names generated during the translation.

Below, the function T defines a translation such that T [s] is an equivalent TAC representation for the
high-level source statement s. T [e] does the same for an expression e. When translating expressions, e,
use t := T [e] to denote the series of instructions to compute e, concluding by storing the result of e
into temporary variable t.

Translate expressions recursively. To translate an expression with subexpressions, first translate the
subexpressions, then generate code to combine their results according to the top-level expression. For
example, t := T [e1 + e2] would be:

t1 := T [e1]
t2 := T [e2]
t = t1 + t2

The first two lines recursively translate e1 and e2 and store their results in new temporary variables t1
and t2, which are then added together and stored in t. Here are a few other general cases:

e t := T [e] (description)
v t := v (variable)
n t := n (integer)

e1.f t1 := T [e1] (field access)
t = t1.f

e1[e2] = e3 t1 := T [e1] (array assignment)
t2 := T [e2]
t3 := T [e3]
t1[t2] := t3

Generate new temporary names whenever necessary. For more complex expressions, apply rules
recursively. T [a[i] = x ∗ y+ 1] becomes:

t1 := T [a]
t2 := T [i]
t3 := T [x ∗ y+ 1]

≡

t1 = a
t2 = i
t4 := T [x ∗ y]

t5 := T [1]
t3 = t4 + t5

≡

t1 = a
t2 = i
t6 := T [x]
t7 := T [y]
t4 = t6 * t7
t5 = 1
t3 = t4 + t5

≡

t1 = a
t2 = i
t6 = x
t7 = y
t4 = t6 * t7
t5 = 1
t3 = t4 + t5

Translation of statements follows the same pattern. T [while (e1) e2] becomes:

label test
t1 := T [e1]
t2 = not t1
cjump t2 end
T [e2]
jump test

label end

(a) Define T for the following syntactic forms:

• t := T [e1 * e2]

2

• t := T [e1 || e2] (where || is short-circuited)
• T [if (e1) e2 else e3]

• T [{ e1; e2; . . .; en }]
• t := T [e0(e1, . . ., en)]

(b) These translation rules introduce more copy instructions than strictly necessary. For example, t4
:= T [x * y] becomes

t6 = x
t7 = y
t4 = t6 * t7

instead of the single statement

t4 = x * y

Describe how you would change your translation function to avoid generating these unnecessary
copy statements.

(c) The original rules also use more unique temporary variables than required, even after changing
them to avoid the unnecessary copy instructions. For example,

T [x = x*x+1; y = y*y-z*z; z = (x+y+w)*(y+z+w)]

becomes the following:

t1 = x * x
t2 = t1 + 1
x = t2
t3 = y * y
t4 = z * z
y = t3 - t4
t5 = x + y
t6 = t5 + w
t7 = y + z
t8 = t7 + w
z = t6 * t8

Rewrite this to use as few temporaries as possible. Generalizing from this example, how would
you change T to avoid using more temporaries than necessary.

(d) Eliminating unnecessary variables here may seem like a good idea, but there are enough downsides
that we will avoid it in our implementation. What are some reasons to stick with original, more
verbose translation (for both or either of questions 2b and 2c)?

(e) (Optional) Translation of some constructs, such as nested if statements, while loops, short-
circuit and/or statements may generate adjacent labels in the TAC. This is less than ideal, since
the labels are clearly redundant and only one of them is needed. Illustrate an example where this
occurs, and devise a scheme for generating TAC that does not generate consecutive labels.

3

4 Sample TAC Definition

This page summarizes a simple three-address code (TAC) intermediate language. There are many choices as
to the exact instructions to include in such a language; we will use something a little different for the Roost
compiler.

• Arithmetic and Logic Instructions.

The basic instruction forms are:

a = b OP c a = OP b

where OP can be

an arithmetic operator: ADD, SUB, DIV, MUL
a logic operator: AND, OR, XOR
a comparison operator: EQ, NEQ, LE, LEQ, GE, GEQ
a unary operator: MINUS, NEG

• Data Movement Instructions.

Copy: a = b
Array load/store: a = b[i] a[i] = b
Field load/store: a = b.f a.f = b

• Branch Instructions.

Label: label L
Unconditional jump: jump L
Conditional jump: cjump a L (jump to L if a is true)

• Function Call Instructions.

Call with no result: call f(a1, ..., an)
Call with result: a = call f(a1, ..., an)

(Note: there is no explicit TAC representation for parameter passing, stack frame setup, etc.)

4

	Plan
	Readings
	Exercises
	Sample TAC Definition

