CS 301:

Compiler and Runtime System Design

What is a compiler?
What is a runtime system?

A compileris a program translator.

(high-level) source language code

Compiler

(low-level) target language code

A compileris a program translator.

int expr(int n) {

intd=4*n*n=w* (n+1) * (n + 1);

return 4;

lda $30,-32($30)
stqg $26,0($30)
stqg $15,8($30)
bis $30,$30,$15
bis $16,$16,51
stl $1,16($15)
1lds $£1,16($15)
sts $£1,24($15)

1d1l $5,24($15) $33:

bis $5,$5,%2

s4addqg $2,0,83
1d1l $4,16($15)
mull $4,$3,$2
1d1l $3,16($15)

addg $3,1,%4
mull $2,$4,$2
1d1l $3,16($15)
addg $3,1,%4
mull $2,$4,$2
stl $2,20($15)
1d1l $0,20($15)
br $31,$33

bis $15,%15,%30
1dq $26,0($30)
1dq $15,8($30)
addq $30,32,$30
ret $31, ($26),1

A compileris a program improver.
Unoptimized Code Optimized Code

1da $30,-32($30) s4addq $16,0,$0
stq $26,0($30) mull $16,%$0,%0
stq $15,8($30) addq $16,1,$16
bis $30,$30,$15 mull $0,$16,%0
bis $16,%16,%1 mull $0,$16,$0
stl $1,16($15) ret $31,($26),1

1ds $£f1,16($15)
sts $£1,24($15)
1d1l $5,24($15)
bis $5,8$5,%$2
sd4addg $2,0,5$3
1dl $4,16($15)
mull $4,8$3,$2
1dl $3,16($15)
addqg $3,1,%4
mull $2,$4,8$2
1d1l $3,16($15)
addqg $3,1,%4
mull $2,%$4,$2
stl $2,20($15)
1d1l $0,20($15)
br $31,$33

$33:
bis $15,$15,$30
1dg $26,0($30)
1dq $15,8($30)
addq $30,32,$30
ret $31, ($26),1

A compiler is a program checker.
A compiler is a programmer's assistant.

Static program analysis

Type checking

Scope checking

Control flow checking

Instrumentation for dynamic program analysis

A runtime system is
a compiler's co-conspirator.

(high-level) source language code

Compiler

A 4

I (low-level) target language code

System

A runtime system is

{ a program translator, a program improver, a program checker,
a programmer's assistant, a compiler's co-conspirator }

Memory management +

Garbage Collection (GC) Dynamic program analysis

Just in Time compilation (JIT)
Feedback-directed optimization

Profiling + profile guided optimization (PGO)

Resource management

Simplified Compiler Structure

Source code

Understand
source code

Intermediate code

C Optimize

Intermediate code

Generate

Target code target code

T

Front end
(target-independent)

|
1

Optimizer
|

T

Back end
(target-dependent)

|

Compiler Front End

Source code if (b==0)a=b:
(character stream)

Lexical Analysis

(Lexing)

Token : — —
stream if (b == |0) al= b A '
Syntax Analysis
if (Parsing)
Abstract syntax _ \=\ _____________
tree (AST) b/ \0 4 \b
Semantic Analysis
Decora te d i (Name Resolution, Type Checking)
AST N, T l
/" \ | ™
b 0 a b

Compiler Middle / Back End

if
Decorated _ \=\
AST b/ AN)

Intermediate Code
Generation

_ t = (b == 0)
Intermediate jympunless €, Looooocooomooo .

code a=>b
label L

A

Optimizations

. t = (b == 0)
Intermediate jumpunless t, Li-—---------------

code ———
label L Target Optimizations

and Code Generation

Target cmp $0,ecx
code cmovz edx,ecx

Zooming out: compiling to machine code...

Compiler

v

Lexical Analysis
Syntax Analysis
Semantic Analysis

Optimization

Code Generation

Linker

Loader
C

Source code

———————— Assembly code

Object code
(machine code)

Fully-resolved object code
(machine code)

— Executable image

Course Material

* Theoretical Foundations
* Implementation

* Synthesis

* Programming Languages (251), Theory (235), Algorithms (231),
Computer Systems (240), Software Construction

» Semester project: full compiler Project Groups

* for small statically typed language e groups of 3 (or 2)

* mostly from scratch * you choose, | can help

* implementedin Scala * work with new people on the
* other tools: git, IntelliJ, gcc, gdb, ... Tiny compiler this week

e Tutorial * Collaboration and Honor Code

Tutorial Meetings

| form trios with your schedule/people input, end of this week.
Weekly assignment for 1-hour small-group meeting with me.
Preparation: Read, work on all problems.

Participation: Discuss any of the problems in detail.
* work through solution on board
* extend problem in new directions
* explain where you got stuck and why

Reviews: Write clean solutions to a few questions | choose.
* in LaTeX
* due 24 hours after your meeting
* better prep before meeting => fewer written solutions after

Books

Compllers ENGINEERING

Principles, Techniques, & Tools A
{ cl Second Edition C O M p l L E R
1\

SECOND EDITION

= T Rl .'u,'v
/Il)//v NWWAN /l/”éj- \\\\\\\

‘I
'D

bt b
'\.

=ICHAON LopN s

TR
\\l
2 r
/ ’,\ U
((!//

A
N
N\

N

v

adl i
PP P NN
\ fz'b
)
" \6 1;\9‘ iy
<))
\Q? f”?/

./ 213
h
v\\\“"
N

T
¥y

\\\

Alfred V. Aho
Monica S. Lam
Ravi Sethi

Jeffrey D. Ullman

o ')‘o v RS ‘
@7//! e
Sretle 1, ‘I T
/

Keith D. Cooper & Linda Torczon

Weekly Schedule

Tutorial Day: Monday/Tuesday/Wednesday
* tutorial meetings
* next tutorial assignment posted

* Tuesday scheduled class time not required after today
* May be used for tutorial
* Otherwise: guaranteed project group availability, code review, etc.

Lab/Work Day: Friday scheduled class time (+ drop-in hours after)
* Introduceand start new project stages/checkpoints
* Project work time
* Code reviews
e Occasional mini-lectures framing upcoming tutorial material
* Project checkpoints / due dates

Other Days:
e Code reviews?
* Drop-in hours, appointments

Tiny compiler!

Source code if(b==0)a =b;

() :

Lexical Analysis

x yll elsen _i0O0

2 1000 5L

2.0 .02 1. 1le5 0.e-10

"x" "She said, \"Hey!\""

/* don't change this */ // or this
if else while break

+ * { } = < << == [] >=

(Crash Course: CS 235 Part 1)

Regular Expressions (regex, RE)

A language s a set of words: {SCI, KSC }, { a,b,c,d,... }
A regular expressiondescribes a (regular) language
abab alb (a|b)* [1-9] [0-9]* [a-z] [a-z0-9] *
Regular expression primitives:
ordinary character stands for itself

the empty string (epsilon)

either R or S (alternation), whereR,S are REs
R followed by S (concatenation)

R repeated O or more times (Kleene star)

L(R) = the language defined by regular expression R
L(a (SCI|KSC)) ={aSCl, akKSC }
L([1-9]1[0-9]*)={1,2,3,4,5,6,7,8910,11,12,13,....}

Regular Expression Extensions

If R is a regular expressions, so are:

A

= ¢|R (zero or one R)

= RR* (one or more R's)

= R (no effect: grouping)

= alb]c (any of the listed characters)

= al|bl..|le (character ranges)

= c|d].. (any character except the listed characters)

= al|blc|d]|.. (any character except newline)

= aliteral . character
= qliteral * character
= aliteral \ character

(Crash Course: CS 235 Part 1)

Acceptors:

(a.k.a. recognizers)

Abstract machines that determine if an input string belongs to a
language, answering Yes/No.

Input W —

String Yes, if w e L
Acceptor |—

No, ifweglL
Llanguage L —

Finite Automata:
acceptors for languages described by regular expressions

(Crash Course: CS 235 Part 1)

Finite Automata

Regular Expression: (-] €)[0-9][0-9]*

Nondeterministic Finite Automaton

Deterministic Finite Automaton ° Q
0-9 0-9
@ 0-9

Building an acceptor for a regular expression:

Regular — » 1| RE = NFA
Expression Conversion
NFA = DFA
Conversion
Input N | DFA. : Yes, if w € L(R)
String Simulation No, if w ¢ L(R)

Example Lexer Generator Specification

o®
o\°

digits = 0| [1-9][0-9]~*

letter = [A-Za-z]

identifier = {letter} ({letter}|[0-9])*
whitespace = [\ \t\n\r]+

o\°
o©

{whitespace} {/* discard */}

{digits} { return new Token (INT, parselInt (yytext()); }
"if" { return new Token (IF, yytext()); }
"while" { return new Token (WHILE, yytext());, }

{identifier} { return new Token (ID, yytext()); }

