
CS 301:
Compiler and Runtime System Design

What is a compiler?
What is a runtime system?

A compiler is a program translator.

(high-level) source language code

Compiler

(low-level) target language code

A compiler is a program translator.

int expr(int n) {

int d = 4 * n * n * (n + 1) * (n + 1);

return d;

}

lda $30,-32($30)

stq $26,0($30)

stq $15,8($30)

bis $30,$30,$15

bis $16,$16,$1

stl $1,16($15)

lds $f1,16($15)

sts $f1,24($15)

ldl $5,24($15)

bis $5,$5,$2

s4addq $2,0,$3

ldl $4,16($15)

mull $4,$3,$2

ldl $3,16($15)

addq $3,1,$4

mull $2,$4,$2

ldl $3,16($15)

addq $3,1,$4

mull $2,$4,$2

stl $2,20($15)

ldl $0,20($15)

br $31,$33

$33:

bis $15,$15,$30

ldq $26,0($30)

ldq $15,8($30)

addq $30,32,$30

ret $31,($26),1

Unoptimized Code

lda $30,-32($30)

stq $26,0($30)

stq $15,8($30)

bis $30,$30,$15

bis $16,$16,$1

stl $1,16($15)

lds $f1,16($15)

sts $f1,24($15)

ldl $5,24($15)

bis $5,$5,$2

s4addq $2,0,$3

ldl $4,16($15)

mull $4,$3,$2

ldl $3,16($15)

addq $3,1,$4

mull $2,$4,$2

ldl $3,16($15)

addq $3,1,$4

mull $2,$4,$2

stl $2,20($15)

ldl $0,20($15)

br $31,$33

$33:

bis $15,$15,$30

ldq $26,0($30)

ldq $15,8($30)

addq $30,32,$30

ret $31,($26),1

Optimized Code

s4addq $16,0,$0

mull $16,$0,$0

addq $16,1,$16

mull $0,$16,$0

mull $0,$16,$0

ret $31,($26),1

A compiler is a program improver.

A compiler is a program checker.
A compiler is a programmer's assistant.

Type checking

Control flow checking

Scope checking

Instrumentation for dynamic program analysis

Static program analysis

A runtime system is
a compiler's co-conspirator.

(high-level) source language code

Compiler

(low-level) target language code
Runtime
System

A runtime system is
{ a program translator, a program improver, a program checker,

a programmer's assistant, a compiler's co-conspirator }

Memory management +

Garbage Collection (GC)

Just in Time compilation (JIT)

Feedback-directed optimization

Profiling + profile guided optimization (PGO)

Dynamic program analysis

Resource management

Simplified Compiler Structure

cmp $0,%ecx
cmovz %edx,%ecx

Source code

Understand
source code

Generate
target code

Target code

Front end
(target-independent)

Back end
(target-dependent)

if (b == 0) a = b;

Optimize

Intermediate code

Intermediate code

Optimizer

Compiler Front End

Source code
(character stream)

Lexical Analysis
(Lexing)

Syntax Analysis
(Parsing)

Token
stream

Abstract syntax
tree (AST)

Semantic Analysis
(Name Resolution, Type Checking)

if (b == 0) a = b;

if (b) a = b ;0==

Decorated
AST

if

==

int b int 0

=

int a int b

boolean int …

if

==

b 0

=

a b

…

Compiler Middle / Back End

Intermediate Code
Generation

Optimizations

if

==

int b int 0

=

int a int b

boolean int …

t = (b == 0)

jumpunless t, L

a = b

label L

t = (b == 0)

jumpunless t, L

a = 0

label L

Intermediate
code

Intermediate
code

Decorated
AST

cmp $0,ecx

cmovz edx,ecx

Target
code

Target Optimizations
and Code Generation

Zooming out: compiling to machine code…
Source code

Assembly code

Assembler Object code

(machine code)

Fully-resolved object code
(machine code)

Executable image

Linker

Loader

Lexical Analysis

Syntax Analysis
Semantic Analysis

Code Generation

Optimization

Compiler

Course Material

• Theoretical Foundations

• Implementation

• Synthesis
• Programming Languages (251), Theory (235), Algorithms (231),

Computer Systems (240), Software Construction

• Semester project: full compiler
• for small statically typed language

• mostly from scratch

• implemented in Scala

• other tools: git, IntelliJ, gcc, gdb, ...

• Tutorial

Project Groups
• groups of 3 (or 2)
• you choose, I can help
• work with new people on the

Tiny compiler this week
• Collaboration and Honor Code

Tutorial Meetings

I form trios with your schedule/people input, end of this week.

Weekly assignment for 1-hour small-group meeting with me.

Preparation: Read, work on all problems.

Participation: Discuss any of the problems in detail.
• work through solution on board
• extend problem in new directions
• explain where you got stuck and why

Reviews: Write clean solutions to a few questions I choose.
• in LaTeX
• due 24 hours after your meeting
• better prep before meeting => fewer written solutions after

Books

Weekly Schedule

Tutorial Day: Monday/Tuesday/Wednesday
• tutorial meetings
• next tutorial assignment posted
• Tuesday scheduled class time not required after today

• May be used for tutorial
• Otherwise: guaranteed project group availability, code review, etc.

Lab/Work Day: Friday scheduled class time (+ drop-in hours after)
• Introduce and start new project stages/checkpoints
• Project work time
• Code reviews
• Occasional mini-lectures framing upcoming tutorial material
• Project checkpoints / due dates

Other Days:
• Code reviews?
• Drop-in hours, appointments

Tiny compiler!

Source code
(character stream)

Lexical Analysis

Token
stream

if (b == 0) a = b;

if (b) a = b ;0==

Identifiers: x y11 elsen _i00

Integers: 2 1000 5L

Floating point: 2.0 .02 1. 1e5 0.e-10

Strings: "x" "She said, \"Hey!\""

Comments: /* don't change this */ // or this

Keywords: if else while break

Symbols: + * { } = < << == [] >=

Regular Expressions (regex, RE)
A language is a set of words: { SCI, KSC }, { a,b,c,d,... }

A regular expressiondescribes a (regular) language
abab a|b (a|b)* [1-9][0-9]* [a-z][a-z0-9]*

Regular expression primitives:

L(R) = the language defined by regular expression R

L(a(SCI|KSC)) = { aSCI, aKSC }

L([1-9][0-9]*) = { 1,2,3,4,5,6,7,8,9,10,11,12,13,....}

a ordinary character stands for itself

ε the empty string (epsilon)

R|S either R or S (alternation), where R,S are REs

RS R followed by S (concatenation)

R* R repeated 0 or more times (Kleene star)

(Crash Course: CS 235 Part 1)

Regular Expression Extensions

If R is a regular expressions, so are:

R? = ε|R (zero or one R)
R+ = RR* (one or more R’s)
(R) = R (no effect: grouping)

[abc] = a|b|c (any of the listed characters)
[a-e] = a|b|…|e (character ranges)
[^ab] = c|d|… (any character except the listed characters)
. = a|b|c|d|… (any character except newline)

\. = a literal . character
* = a literal * character
\\ = a literal \ character

...

Acceptors:
(a.k.a. recognizers)

Abstract machines that determine if an input string belongs to a
language, answering Yes/No.

Finite Automata:
acceptors for languages described by regular expressions

Input
String

Language

Acceptor

w

L

Yes, if w  L

No, if w  L

(Crash Course: CS 235 Part 1)

Finite Automata

Regular Expression: (-|)[0-9][0-9]*

Nondeterministic Finite Automaton:

Deterministic Finite Automaton:

0 1



-

2

0-9

3

0-9



0 1

2

-

0-90-9

0-9

(Crash Course: CS 235 Part 1)

Building an acceptor for a regular expression:

RE  NFA
Conversion

NFA  DFA
Conversion

DFA
Simulation

Yes, if w  L(R)

No, if w  L(R)
Input
String

Regular
Expression

R

w

Example Lexer Generator Specification

%%

digits = 0|[1-9][0-9]*

letter = [A-Za-z]

identifier = {letter}({letter}|[0-9_])*

whitespace = [\ \t\n\r]+

%%

{whitespace} {/* discard */}

{digits} { return new Token(INT, parseInt(yytext()); }

"if" { return new Token(IF, yytext()); }

"while" { return new Token(WHILE, yytext()); }

…

{identifier} { return new Token(ID, yytext()); }

