
CS 301 Spring 2021 T4
Tutorial Assignment
6 May

Type Polymorphism, Information Flow

1 Plan

Lexical
Analysis

Syntax
Analysis

Semantic
Analysis

Intermediate
Code

Generation

Machine-
Independent
Optimization

Code
Generation

Source
Program

Target
Program

In this topic, we explore type checker design, two forms of type polymorphism, and their intersection:
parametric polymorphism (generic/parameterized types common in many statically typed languages); and
subtype polymorphism (foundations of types in object-oriented languages).

We then consider applications of polymorphic type systems for checking information flow policies with
applications in security and approximate computing. These topics are supported by research papers. Aim to
understand the big ideas and the most important technical details.

2 Readings

Readings on specific topics draw repeatedly on sections (by topic, below) from these sources:

• Two papers on type system foundations. The former introduces formal notations we will use. The latter
uses more code examples. Mix and match as they are useful to you.

– Type Systems.
Luca Cardelli. In Handbook of Computer Science and Engineering, CRC Press, 1997.
http://lucacardelli.name/Papers/TypeSystems.pdf

– On Understanding Types, Data Abstraction, and Polymorphism.
Luca Cardelli and Peter Wegner. Computing Surveys, vol. 17 no. 4, December 1985.
http://lucacardelli.name/papers/onunderstanding.a4.pdf

• Programming language references:

– The Java Tutorials: Generics (Updated): https://docs.oracle.com/javase/tutorial/java/
generics/index.html

– Roost Language Specification:
https://cs.wellesley.edu/~cs301/s21/project/roost-lang.pdf

Specific sections by topic:

• Type systems in general, parametric polymorphism:

– Type Systems: Sections 1–3 (review), Section 3 up through Table 15, Sections 4–5 up to Table 26
– On Understanding Types, Data Abstraction, and Polymorphism: Sections 1–4
– The Java Tutorials: Generics (Updated):

∗ Why Use Generics : https://docs.oracle.com/javase/tutorial/java/generics/why.html
∗ Generic Types : https://docs.oracle.com/javase/tutorial/java/generics/types.html
∗ Generic Methods: https://docs.oracle.com/javase/tutorial/java/generics/methods.
html

– Roost Language Specification: Sections 8 Type System and 9.1 Generic Types

• The intersection of parametric and subtype polymorphism:
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– Type Systems: Sections 6, 9

– On Understanding Types, Data Abstraction, and Polymorphism: Sections 6.2, 8

– The Java Tutorials: Generics (Updated).

∗ Bounded Type Parameters: https://docs.oracle.com/javase/tutorial/java/generics/
bounded.html

∗ Generics, Inheritance, and Subtypes: https://docs.oracle.com/javase/tutorial/java/
generics/inheritance.html

• Type system applications:

– Language-Based Information-Flow Security. Sections I - III.
Andrei Sabelfeld, Andrew C. Myers. IEEE Journal on Selected Areas in Communications, 2003.
http://www.cs.cornell.edu/andru/papers/jsac/sm-jsac03.pdf

– EnerJ: Approximate Data Types for Safe and General Low-Power Computing. Sections 1 - 3.1.
Adrian Sampson, et al.. PLDI 2011.
https://doi.org/10.1145/1993498.1993518
(Off campus: https://www.cs.cornell.edu/~asampson/media/papers/enerj-pldi2011.pdf)

∗ EnerJ, The Language of Good-Enough Computing. (General-audience article.)
Adrian Sampson, Luis Ceze, Dan Grossman. IEEE Spectrum.
https://spectrum.ieee.org/computing/software/enerj-the-language-of-goodenough-computing

3 Exercises

1. [Roost Compiler] Design the typecheck package for your Roost compiler. This package will
support semantic checks outlined in the Roost specification. The main functionality is the type checker,
whose job is to take an AST, check that it is well-typed, and decorate each expression (or statement)
node with a representation of its type. You will need to add a field to the abstract class for expression
nodes (or to a trait that you mix in to relevant AST node classes) to store the AST representation of
the type determined by the type checker for the expression.

Please come to the tutorial meeting with a design detailed enough to discuss the following items:

(a) Draw the AST for the expression x + 3 == 7 || a[1] > -x as it would be represented by your
AST data structure. Annotate each node in the AST with the type of the corresponding expression,
assuming that x:i64 and a:[i64].

(b) Sketch the implementations of the type checker’s code for checking each of the following kinds of
AST nodes:

• a unary expression (!e or −e)
• an array access
• a variable access
• a let expression
• an assignment

(c) Other than the decorations described above, what (if any) other changes will you make to the ast
package to support type checking?

(d) How will your type checker model typing environments? Must it maintain them explicitly or is
this information already captured by your symbol tables and AST?

2. [Generic Types] This Roost map function takes a function of argument type i64 and result type
String and uses it to map all elements of an array of element type i64 to elements in a new array of
element type String.
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fn map(f: fn (i64) -> String, elems: [i64]) -> [String] {
if (elems.length == 0) {

[]
} else {

let first = f(elems[0]);
let result = [first; elems.length];
let mut i = 1;
while (i < elems.length) {

result[i] = f(elems[i]);
i = i + 1;

}
result

}
}

(a) Rewrite the map function using parametric polymorphism so that it can map source arrays of any
element type to result arrays of any element type using a function of the relevant type.

(b) Extra Depth: Note the (cumbersome) special treatment of the zero-length case and the first
element as filler for the result array. These are due to Roost’s requirement that all storage be
fully initialized upon creation (no null). Is there a way to rewrite the generic form of the function
using Roost (and any standard extensions) to avoid these special cases without changing the
signature of the map function? If so, write it. If not, can you suggest any language changes that
would make it possible without allowing uninitialized storage?

3. Consider the Roost code below. The result expression and result type of the function definition for f
have been replaced by expr and Type, respectively.

struct S<T, U> {
t: T,
u: U,

}
fn m<T, U, V>(s: S<T, U>, t: T, u: U, v: V, w: V) -> S<T, U> {

S { t: s.t, u: u }
}
fn f<A>(b: S<A, i64>, c: A) -> A {

if b.u == 0 {
b.t

} else {
c

}
}
fn g() -> Type {

let x = S {t : 0, u: 1};
expr

}

For each of the following pairs of expression and type, indicate whether the code is well typed under
this replacement. If the replacement is well typed, indicate the type arguments that are inferred for
function f’s type parameter A or method m’s type parameters U and V in this call. If the replacement is
not well typed, briefly explain why.
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Replace expr with Replace Type with
(a) f(x, "hello") String
(b) f(x, 5) i64
(c) m(x, 2, 3, 4, 5) S<i64, i64>
(d) m(x, 2, 3, 4, "hello") S<i64, i64>
(e) m(x, 2, 3, 4, 5) S<T, U>
(f) m(x, 2, "hello", false, true) S<i64, String>
(g) m(x, true, "hello", 4, 5) S<bool, String>
(h) f(m(x, 2, "hello", false, true), 5) i64

4. [Subtypes] Consider a Roost-like language with some sort of type mechanism (such as interfaces,
traits, or subclasses) that supports subtyping. In a type environment Γ such that Γ ` a : A, Γ ` b : B,
Γ ` c : bool, Γ ` d : D, D <: A, and B <: A, consider the following code snippets:

(a) if (c) { 10 } else { 20 }
(b) if (c) { 10 } else { true }
(c) let x: A = if (c) { a } else { b };
(d) let x: B = if (c) { a } else { b };
(e) let x: A = if (c) { b } else { d };

For each of the if e1 e2 else e3 expressions appearing in this list:

• Is this if-else expression safe to use (i.e., will its use never lead to run time type errors) in any
program in a context satisfying the type environment conditions above?

• How could the Roost type system rules for if-else be rewritten allow it (or something close)
without compromising soundness?

• What is the most precise result type that your type system extension allows for the full if-else
expression?

5. Suppose we introduce null into the Roost language. Under the same environment as the previous
exercise, consider the expression:

if (c) { null } else { a }

This expression should type-check with type A.

(a) Define new typing or subtyping rules to allow the Roost type to handle null as a value for any
structure type, signature type, or the String type. It may be helpful to introduce a new type
for the null value. Your type system does not need to protect against dereferencing null at run
time, just against using one type of non-null value as another incompatible type and against
using null as a value in a non-reference type (i64, bool, unit).

(b) Discuss the pros and cons of supporting null in the language. Consider alternatives to null that
you have encountered in other languages. Could they be coded using existing Roost features or
with minor changes to the language?

6. Java uses the following covariant subtyping rule for array types:
covariant array subtype
τ1 <: τ2

τ1[] <: τ2[]

This subtyping rule was introduced in the original Java type system despite being unsound, before
the later addition of generic types and methods to the language. It allowed the type system to accept
certain standard library methods such as System.arrayCopy(Object[] source, Object[] dest), a
general method that copies the elements of any object array to another. Without the covariant array
subtyping rules or generics, such methods could not be written in Java. Even though generics make the
original justification for this unsound subtyping rule obsolete, it was retained in following versions of
Java for backward compatibility.
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(a) Demonstrate why this rule causes the type system to be unsound (that is, it allows programs that
may cause run-time type errors) by writing a short Java program that would cause a run-time
type error when executed. Try running your program. If your answer is correct, it really will crash
with a run-time type error exception.

(b) The same issues at play in array subtyping are relevant in the interactions of subtyping and
parametric polymorphism. Arrays are essentially a special case of a parametric type: consider
them as Array<T>. Parametric polymorphic types in Java (see Generics, Inheritance, and Subtypes)
and Roost (plus Roost arrays) are therefore invariantly subtyped only:

invariant subtype
τ1 <: τ2

τ1<τ3> <: τ2<τ3>

On the other hand, Scala supports explicit notation of covariant or contravariant subtyping for type
parameters in class definitions (Scala Tour: Variances: https://docs.scala-lang.org/tour/
variances.html). To preserve soundness in the presence of variant subtyping of type parameters,
the type checker should enforce restrictions on the declarations of fields or methods in classes with
explicit variance. Under what circumstances is covariance safe?

7. [Parametric + Subtype Polymorphism] Consider generic types, subtypes, and their combination:

(a) What are the key purposes or benefits of each? How do they support polymorphism?
(b) Using Figure 2 (p. 35) of On Understanding Types, Data Abstraction, and Polymorphism, briefly

categorize the type systems (and individual features) of Java, Scala, Roost, and any other
statically typed languages you have used, such as ML, TypeScript, or C++. Note especially the
Bounded Type Parameters section of the Java generics tutorial.

8. Extra Depth [Information Flow] Skim sections I – III of the Language-Based Information-Flow
Security paper, which covers the general issue of security and information flow and discusses a number
of research issues regarding how to ensure that confidential information does not accidently leak out of
a computation. Explain the meaning and importance of the following concepts from the paper:

(a) Static information-flow control
(b) Non-interference
(c) Implicit flow

9. Extra Depth: Consider a C-like language of pointers. Expressions and statements have the following
syntax:

e → n | x | &x | ∗ e
s → x = e | x = malloc() | ∗ x = e

where n is an integer constant, x is a variable, and malloc() allocates an integer or a pointer on the
heap (according to the declared type of x), and then returns a pointer to that piece of data. The only
types are pointers and integers, but pointers can be multi-level pointers. The syntax for types is:

τ → int | τ∗

(a) Write typing rules for all of the expressions and assignment statements. Use judgments of the
form Γ ` s for statements, and judgments of the form Γ ` e : τ for expressions.

(b) Now let’s extend the types in this language with two type qualifiers taint and trust, to support
static information flow control with the type system. Tainted data represents data that the
program received from external, untrusted sources, such as standard input, a network socket, or
a web form input. All of the other data is trusted. Some languages provide dynamic or static
support for manual tracking of data tainting to, for example, prevent certain forms of security
attacks on web programs such as SQL injections.
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To model tainting, we extend the set of statements with a read() statement that reads an untrusted
integer value from an external source:

e → ... | read()

The syntax for qualified types is:

τ → Q R

R → int | τ ∗
Q → taint | trust

For instance, trust ((taint int) *) represents a trusted pointer to a tainted location, and
taint ((taint int) *) denotes a tainted pointer to a tainted location.
Write appropriate typing rules for expressions n , x, &x, *e, and read() for programs with qualified
types. Also write a rule for malloc.

(c) We want to prohibit the flow of values from untrusted sources into trusted portions of the memory.
However, we want to allow flows of values from trusted locations to tainted locations. We can
achieve this by defining an appropriate subtyping relation <: between qualified types. First, we
define an ordering � between qualifiers:

trust � Q Q � Q

We then use the subtyping rule and a subtype-aware assignment rule:

Subtype
Q � Q′

QR <: Q′R

Assign
Γ ` x : τ Γ ` e : τ ′ τ ′ <: τ

Γ ` x = e

to enforce the desired control over trusted values. For instance, these rules would make it possible
to type-check this code fragment:

taint int x;
trust ((trust int) *) y;
y = malloc();
x = *y;

Prove that the above program type-checks by showing the proof trees for each of the two assignments.

(d) Write the remaining rule for indirect assignments {*x = e}. Illustrate the use of this rule on a
small program like the example above.

(e) Consider the following, more general subtyping rules:

Subtype 1
Q � Q′

Q int <: Q′ int

Subtype 2
Q � Q′ T <: T ′

Q (T∗) <: Q′ (T ′∗)

Are these rules sound? If yes, argue why. If not, show a program fragment that type-checks, but
yields a type error at run time.

10. Extra Depth: Read sections 1 – 3.1 of the EnerJ paper. The accompanying general-audience article
can help give more context for this work.

(a) What is the main problem the EnerJ type system aims to solve?

(b) How does the type system, with approximate and precise types, relate to information flow or our
trusted/tainted type system?

(c) How do non-interference and implicit flows manifest in approximate computing? How does the
EnerJ type system track and control them?

6



(d) EnerJ’s context qualifier supports code that is polymorphic in its containing class’s approximation
behavior. How is the context qualifier similar to or different from type parameters in a parametric
polymorphic type system? Can you construct a situation in which additional genericity would
improve the expressivity of EnerJ or is the context qualifier sufficient for reasonable codes?

(e) EnerJ’s endorsements are somewhat like casting. Does their treatment in EnerJ seem closer to
casting in C (unchecked) or in Java (actual object type checked against cast type at run time to
ensure a subtype relationship)?
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