
CS 301 Spring 2021 T4
Tutorial Assignment
29 April

Symbol Tables, Types

1 Plan

Lexical
Analysis

Syntax
Analysis

Semantic
Analysis

Intermediate
Code

Generation

Machine-
Independent
Optimization

Code
Generation

Source
Program

Target
Program

This tutorial explores symbol table management for name and scope analysis in the Roost compiler and
type systems as a foundation for describing and reasoning about type checking.

2 Readings

• Skim EC 5.5. Do not take the concrete symbol table pseudocode from EC too literally. Think abstractly
for yourself about how to implement this.

• Skim EC 4.2

• Type Systems. Sections 1–3 (stop after Table 9), Section 9.
Luca Cardelli. In Handbook of Computer Science and Engineering, CRC Press, 1997.
http://lucacardelli.name/Papers/TypeSystems.pdf

Even though you will not need to use it in any detail, this paper does assume familiarity with the
λ-calculus as a basic syntax for a programming language. The Wikipedia entry for lambda calculus or
the first few sections of http://www.cs.bham.ac.uk/~axj/pub/papers/lambda-calculus.pdf should
suffice if you have not taken CS 251.

• Roost Language Specification, Type System section
https://cs.wellesley.edu/~cs301/s21/project/roost-lang.pdf

• Roost Compiler Front End project page, Building Scopes and Resolving Names section
https://cs.wellesley.edu/~cs301/s21/project/frontend/#scope

3 Exercises

1. Design a SymbolTable data structure for your Roost compiler. The symbol table will be used to
encode all symbol (name/identifier) information for a scope, as well as its relation to other scopes. A
scope-building function will traverse the AST recursively, constructing symbol tables and annotating
each AST node with the symbol table describing its scope, as described in the Front End project
document.

Do not take the concrete symbol table pseudocode from EC too literally. Think abstractly for yourself
about how to implement this. You may find it useful to work the next exercise alongside this one and
consult the Front End project description for general design hints.

Your design, in whatever format is easiest to capture your thoughts, should address the following items:

(a) Define the general interface to the SymbolTable. Describe the operations it supports and sketch
the internal representation details. Include a description of what information is stored with each
symbol in the tables (i.e., your SymbolTable is really a map from identifier to. . . ?).

(b) Describe how the scope-building function will create or manipulate symbol tables as it enters and
exits each form of scope (e.g., top-level, function, structure, enumeration, let-block, module).

1

http://lucacardelli.name/Papers/TypeSystems.pdf
http://www.cs.bham.ac.uk/~axj/pub/papers/lambda-calculus.pdf
https://cs.wellesley.edu/~cs301/s21/project/roost-lang.pdf
https://cs.wellesley.edu/~cs301/s21/project/frontend/#scope

(c) How will your scope-building function create a new symbol entry when it encounters a declaration?

(d) When, where, and how will the scoping rules be enforced?

(e) When, where, and how will names be resolved to their declarations?

(f) What explicit support, if any, must your AST design provide for construction and storage of
symbol tables, checking of scoping rules, and resolution of name references? How can Scala traits
make this more straightforward?

(g) For each occurrence of Id in the Roost grammar, identify whether it is a definition that introduces
a new name into the current scope or a reference that uses a name from the current scope. For
references, indicate the scope in which the defining occurrence of the referenced name would occur.

2. Sketch the contents of your SymbolTable structure after processing the following Roost code, which
uses generic types (similar to Java, Scala, Rust, Swift) from the Roost standard extensions.

1 extern fn string_length(s: String) -> i64;
2
3 struct A<T> {
4 x: i64,
5 y: T
6 }
7
8 enum B<U,V> {
9 C,

10 D(A<U>),
11 E(V)
12 }
13
14 fn f<W>(s: A<W>, mut y: i64, x: W) -> W {
15 {
16 y = y + s.x;
17 let x = 1 + y;
18 y = y + x;
19 }
20 if (y < 0) {
21 x
22 } else {
23 s.y
24 }
25 }
26
27 fn g(s: A<i64>, r: B<A<bool>, String>, q: i64) -> i64 {
28 if (q == 0) {
29 let q = A { x: s.y, y: "Roost" };
30 f(q, s.x, "Compiler")
31 } else {
32 match (r) {
33 C => g(s, E("Roost"), s.x),
34 D(x) => x.x + s.y,
35 E(s) => string_length(s),
36 }
37 }
38 }

3. Use your symbol table sketch to indicate how your compiler will resolve all function, parameter, variable,
field, and type identifiers in the above code.

2

4. For each of the following Roost constructs, state whether it is well-typed in some well-formed typing
context, according to the type system from the Roost Language Specification. If the construct is
well-typed, give the most general typing context in which the construct is well-typed and write the
corresponding typing derivation / proof tree. If the construct is not well-typed in any type context,
explain why. (You do not need to prove that environments and types are well-formed. You should be
able to convince yourself that any type or environment that you mention is well-formed, however.)

(a) [0; x.length][x[2]]

(b) if (x == v[x] && y == "true") { x = y; }

(c) ((a == b) == c) || (a == (b + c))

(d) {f(x)[x.length] = y[2]; ()}

(e) if (x == a[b[x]] && y) { y = b[c[x]]; }

(f) {f(y, g(x))[1] = g(f(x.length, z)); ()}

(g) if (x[a.length] == a.length) { x } else { a }

5. Suppose we extend Roost with tuples of the following form. A tuple type is written as a sequence of
types in parentheses. For example, the type (i64, bool, String) represents a 3-tuple. The individual
elements of the tuple can be accessed (i.e., read or written) in a manner similar to array elements. For
example, if x has type (i64, bool, String), the expression x[0] has type i64, x[1] has type bool,
and x[2] has type String. Tuples are unlike arrays in that the index must be an integer literal. (It
cannot be an arbitrary expression.)

(a) Explain why it is necessary to require that the index of a tuple indexing expression be a integer
literal (a constant).

(b) Write additional Roost typing rules for support immutable tuples. (Parts may be accessed but
not assigned.)

(c) Consider the types T1 = (i64, [(i64, i64)]) and T2 = [(i64, (i64, i64))]. Write an
expression using a variable x that type-checks regardless of whether x has type T1 or type T2.
Write an expression that type-checks if x has type T1, but does not type-check if x has type T2.
We require that x, 0, and 1 are the only variables and constants in your expressions.

(d) Syntactically, the tuple element access expression looks like an array element access expression.
Will this create problems for type checking? Explain briefly.

6. This problem concerns the typing of for loop constructs.

(a) Suppose we extend Roost to support for loops that operate over ranges of integer values:
for (x from e1 to e2) b

In this form, x is a variable in scope with type i64, e1 and e2 are arbitrary expressions providing
the loop bounds, and b is an arbitrary block expression: the body of the loop. The loop body, b,
is executed once for each value of x in the range from the result of evaluating e1 up to but not
including the result of evaluating e2. Write a typing rule that ensures safe execution such loops.

(b) It is difficult to reason about for loops when the execution of the loop body might change the
iteration variable or the loop bounds. Describe a semantic check that would ensure this never
happens. (You can either write down typing rules to capture your checking or just explain your
checking in English.)

(c) Suppose we further augment Roost with extended for loops, in a fashion similar to those in
Python, Java 1.5+, or Scala. An extended for loop in Roost will have the following form:

for (x: T in e) b

In this form, x is a newly declared local variable of type T that is bound to each element of the
array resulting from evaluating the expression e, and b is the loop body, a block expression. Write
an appropriate typing rule for this construct.

3

7. Section 1 of Cardelli’s Type Systems as well EC 4.2 discuss nominal (name) and structural type
equivalence.

• What is the difference?

• Which does Java use? Which does Roost use? Can you think of examples of both in other
statically-typed languages you have used (e.g., ML, Scala, Haskell, C#, Rust, Swift, TypeScript,
. . .)? In dynamically-typed languages (e.g., Racket, Python, Ruby, JavaScript, . . . ?) Do any
languages mix the two approaches?

• Both authors describe tradeoffs between nominal and structural typing. Do you agree with them?
Which is better? Which issues should you worry about?

8. Extra Depth: Is the large Roost code above well-typed? Use the type system from the Roost
Language Specification to explain informally, but in detail, how type-checking should proceed on this
code. There’s no need to write it all down, but capture the most subtle or surprising parts and be ready
to explain everything.

4

	Plan
	Readings
	Exercises

