
1

Introduction to Programming
with Python

http://www.pasteur.fr/formation/infobio/python/

A Useful Reference

2

• An algorithm is a series of steps for solving a problem

• A programming language is a way to express our
algorithm to a computer

• Programming is the process of writing instructions
(i.e., an algorithm) to a computer for the purpose of
solving a problem

What is Computer Programming?

We will be using the programming language Python

• A variable is a mnemonic name for something that
may change value over time.

kozak = “ACCATGG”

name = “Brian”

year = 2007

year = 2008

GC_content = 0.46

variable_name = value (generic variable assignment)

Variables

• Variable - “I don’t think that word means what you
think it means”

2008 = year (wrong!)

0.46 = GC_content (wrong!)

3

• Variables store values of some type. Types have
operators associated with them.

year = 2008

nextYear = year + 1

GC_content = 2.0 * 0.21

kozak = “ACC” + “ACCATGG”

year = year + 1

kozak = kozak + “TT” + kozak

variable_name = value (generic variable assignment)

Types

• You can have the computer tell you the value of a variable
print nextYear

print “The GC content is:”, GC_content

print year

print kozak

• Strings are a sequence of characters
kozak = “ACCATGG”

• Strings are index-able
kozak[0] refers to ‘A’, the first character in kozak
kozak[4] refers to ‘T’, the fifth character in kozak

Strings

• Strings have lots of operations
kozak.lower() returns “accatgg”
kozak.count(‘A’) returns 2
kozak.replace(‘A’, ‘q’) returns “qCCqTGG”
len(kozak) returns 7

4

kozak = “ACCATGG”

• What percent of the sequence corresponds to adenine
nucleotides?

numberOfAdenines = kozak.count(‘A’)

totalNucleotides = len(kozak)

A_content = numberOfAdenines / totalNucleotides

print A_content

Nucleotide Content

What went wrong?

Reading a File

• Suppose the DNA sequence is stored in the file kozak.txt.
We can read the sequence from the file...

file = open(“kozak.txt”)

sequence = file.read()

print sequence

ACCATGG

kozak.txt

Generic code for reading a file
variable_name_1 = open(string referring to file name)
variable_name_2 = variable_name_1.read()

5

Putting it all Together

Read in file and store string in variable *sequence*

file = open(“kozak.txt”)

sequence = file.read()

Calculate number of adenines in sequence

numberOfAdenines = float(sequence.count(‘A’))

totalNucleotides = float(len(sequence))

A_content = numberOfAdenines / totalNucleotides

print A_content

ACCATGG

kozak.txt

What about GC content?

Slicing a String

Read in file and store string in variable *sequence*

file = open(“kozak.txt”)

sequence = file.read()

Grab a piece of the sequence

firstThreeLetters = sequence[0:3]

print firstThreeLetters

middleThreeLetters = sequence[2:5]

print middleThreeLetters

ACCATGG

kozak.txt

What about your gene?

6

kozak = “ACCATGG”

• Booleans are either True or False
kozak == “ACCATGG”

kozak == “GCATCAG”

kozak == “accatgg”

kozak.lower() == “accatgg”

len(kozak) > 10

len(kozak) < 10

‘A’ in kozak

‘U’ in kozak

Booleans

• Normal execution flow: SEQUENTIAL
• Often you want to execute code (instructions) only in
certain circumstances (i.e., conditionally)

file = open(“kozak.txt”)
sequence = file.read()

Do we have a short sequence?
if (len(sequence) < 50):

print “This is a short sequence.”

Decisions, Decisions, Decisions

Check if sequence starts off looking like a gene
if (sequence[0:3] == “ATG”):

print “Sequence has start codon.”
length = len(sequence)
finalCodon = sequence[length-3:length]
print “Final three NTs are: ” + finalCodon

Is this an RNA sequence?
if (sequence.count(‘U’) > 0):

print “Sequence has RNA nucleotides”

7

• Sometimes you want to decide between two alternatives
file = open(“kozak.txt”)
sequence = file.read()

Do we have a short sequence?
if (len(sequence) < 50):

print “This is a short sequence.”
else:

print “This is a long sequence.”

Otherwise...

Is this an RNA sequence?
if (sequence.count(‘U’) > 0):

print “Sequence has RNA nucleotides”
else:

numOfThymines = sequence.count(‘T’)
print “Sequence has ”, numOfThymines, “ thymines.”

• You can put any code in the body of a conditional
statement, including other conditional statements

Check if sequence starts and ends looking like a gene
if (sequence[0:3] == “ATG”):

print “Sequence has start codon.”
length = len(sequence)
finalCodon = sequence[length-3:length]
if (finalCodon == “TGA”):

print “Sequence has stop codon.”
if (finalCodon == “TAG”):

print “Sequence has stop codon.”
if (finalCodon == “TAA”):

print “Sequence has stop codon.”

Nesting Conditionals

Is this an RNA sequence?
if (sequence.count(‘U’) > 0):

print “Sequence has RNA nucleotides”
else:

if (sequence.count(‘T’) > 0):
print “Sequence has DNA nucleotides.”

8

if-then
if (boolean_expression):

Statements to execute if boolean_expression is true

Generic Conditionals

if-then-else
if (boolean_expression):

Statements to execute if boolean_expression is true
else:

Statements to execute if boolean_expression is false

nested conditionals
if (boolean_expression_1):

if (boolean_expression_2):
Statements to execute if boolean_expression_2 is true

else:
Statements to execute if boolean_expression_2 is false

Reading in a FASTA File

9

• Suppose you want to repeat a series of instructions
Tell us how you feel about this class
counter = 5
while (counter > 0):

print “I love Bioinformatics!”
counter = counter - 1

Repetition is a Powerful Idea

Assuming we have a coding sequence, print out each codon
startOfCodon = 0
while (startOfCodon < len(sequence)):

codon = sequence[startOfCodon:startOfCodon+3]
print codon
startOfCodon = startOfCodon + 3

Find the start of all possible ORFs in sequence
startOfCodon = 0
while (startOfCodon < len(sequence)):

codon = sequence[startOfCodon:startOfCodon+3]
if (codon == “ATG”):

print “Found start codon at ”, startOfCodon
startOfCodon = startOfCodon + 1

Loop (i.e., Repetition) Examples

Search for ambiguous nucleotides in sequence
indexOfCurrentNucleotide = 0
while (indexOfCurrentNucleotide < len(sequence)):

if (sequence[indexOfCurrentNucleotide] not in “ACGT”):
print “I don’t recognize the character: ”,

sequence[indexOfCurrentNucleotide]
indexOfCurrentNucleotide = indexOfCurrentNucleotide + 1

10

Loop
while (boolean_expression):

Statements to execute as long as boolean_expression is true.
Statements should ensure that, eventually, boolean_expression
will be false. Otherwise, the loop will repeat indefinitely.

Generic Repetition

Python Summary

• Types of variables: numbers, strings, Booleans
• Assigning values to variables
• Slicing and dicing with strings

• Reading in files; text and variable value output

• Conditionals (if-then, if-then-else)
• Repetition Repetition Repetition Repetition

Repetition Repetition Repetition Repetition
Repetition Repetition Repetition Repetition…

