Introduction to Django

Table of Content
Why Django
What is a Web Framework
The MVC Design Pattern
Views and URLconfs
URLconfs and
Templates
Models
Additional Readings

Why Django
As Websites grew and became more ambitious, it quickly became obvious that that situation was
tedious, time-consuming, and ultimately untenable. A group of enterprising hackers at NCSA (the
National Center for Supercomputing Applications, where Mosaic, the first graphical Web browser, was
developed) solved this problem by letting the Web server spawn external programs that could
dynamically generate HTML. They called this protocol the Common Gateway Interface, or CGI, and it
changed the Web forever.

It’s hard now to imagine what a revelation CGI must have been: instead of treating HTML pages as
simple files on disk, CGI allows you to think of your pages as resources generated dynamically on

demand. The development of CGI ushered in the first generation of dynamic Web sites.

However, CGI has its problems: CGI scripts need to contain a lot of repetitive “boilerplate” code, they

make code reuse difficult, and they can be difficult for first-time developers to write and understand.

PHP fixed many of these problems, and it took the world by storm — it’s now by far the most popular
tool used to create dynamic Web sites, and dozens of similar languages and environments (ASP, JSP,
etc.) followed PHP’s design closely. PHP’s major innovation is its ease of use: PHP code is simply

embedded into plain HTML; the learning curve for someone who already knows HTML is extremely

shallow.

But PHP has its own problems; its very ease of use encourages sloppy, repetitive, ill-conceived code.
Worse, PHP does little to protect programmers from security vulnerabilities, and thus many PHP

developers found themselves learning about security only once it was too late.

These and similar frustrations led directly to the development of the current crop of “third-generation”
Web development frameworks. These frameworks — Django and Ruby on Rails appear to be the most
popular these days — recognize that the Web’s importance has escalated of late. With this new

explosion of Web development comes yet another increase in ambition; Web developers are expected

to do more and more every day.

Django was invented to meet these new ambitions. Django lets you build deep, dynamic, interesting
sites in an extremely short time. Django is designed to let you focus on the fun, interesting parts of your
job while easing the pain of the repetitive bits. In doing so, it provides high-level abstractions of
common Web development patterns, shortcuts for frequent programming tasks, and clear conventions
on how to solve problems. At the same time, Django tries to stay out of your way, letting you work

outside the scope of the framework as needed.

What Is a Web Framework?
Django is a prominent member of a new generation of Web frameworks — but what does that term
mean, precisely? To answer that question, let’s consider the design of a Web application written in
Python without a framework. Throughout this reading, we’ll take this approach of showing you basic
ways of getting work done without shortcuts, in the hope that you’ll recognize why shortcuts are so
helpful. (It’s also valuable to know how to get things done without shortcuts because shortcuts aren’t
always available. And most importantly, knowing why things work the way they do makes you a better

Web developer.)

One of the simplest, most direct ways to build a Python Web app from scratch is to use the Common
Gateway Interface (CGI) standard, which was a popular technique circa 1998. Here’s a high-level
explanation of how it works: just create a Python script that outputs HTML, then save the script to a

Web server with a ”.cgi” extension and visit the page in your Web browser. That’s it.

Here’s an example Python CGI script that displays the ten most recently published books from a

database. Don’t worry about syntax details; just get a feel for the basic things it’s doing:

#!/usr/bin/env python
import MySQLdb

print "Content-Type: text/html\n"

print "<html><head><title>Books</title></head>"
print "<body>"

print "<hl>Books</hl>"

print ""

connection = MySQLdb.connect (user="'me', passwd='letmein', db='my db')
cursor = connection.cursor ()
cursor.execute ("SELECT name FROM books ORDER BY pub date DESC LIMIT 10")

for row in cursor.fetchall() :
print "<1i>%$s</1i>" % row[0]

print ""
print "</body></html>"

connection.close ()

First, to fulfill the requirements of CGI, this code prints a “Content-Type” line, followed by a blank
line. It prints some introductory HTML, connects to a database and runs a query to retrieve the names
of the latest ten books. Looping over those books, it generates an HTML list of the titles. Finally, it
prints the closing HTML and closes the database connection.
With a one-off page like this one, the write-it-from-scratch approach isn’t necessarily bad. For one
thing, this code is simple to comprehend — even a novice developer can read these 16 lines of Python
and understand everything it does, from start to finish. There’s nothing else to learn, no other code to
read. It’s also simple to deploy: just save this code in a file that ends with ”.cgi”, upload that file to a
Web server, and visit that page with a browser.
But despite its simplicity, this approach has a number of problems and annoyances. Ask yourself these
questions:
m What happens when multiple parts of your application need to connect to the database? Surely
that database-connecting code shouldn’t need to be duplicated in each individual CGI script.
The pragmatic thing to do would be to refactor it into a shared function.
m Should a developer really have to worry about printing the “Content-Type” line and

remembering to close the database connection? This sort of boilerplate reduces programmer

productivity and introduces opportunities for mistakes. These setup- and teardown-related tasks
would best be handled by some common infrastructure.

m What happens when this code is reused in multiple environments, each with a separate database
and password? At this point, some environment-specific configuration becomes essential.

m What happens when a Web designer who has no experience coding Python wishes to redesign
the page? One wrong character could crash the entire application. Ideally, the logic of the page
— the retrieval of book titles from the database — would be separate from the HTML display of

the page, so that a designer could edit the latter without affecting the former.

These problems are precisely what a Web framework intends to solve. A Web framework provides a
programming infrastructure for your applications, so that you can focus on writing clean, maintainable

code without having to reinvent the wheel. In a nutshell, that’s what Django does.

Let’s dive in with a quick example that demonstrates the difference between the previous approach and
a Web framework’s approach. Here’s how you might write the previous CGI code using Django. The
first thing to note is that that we split it over four Python files (models.py, views.py, urls.py) and an
HTML template (latest books.html):

models.py (the database tables)

from django.db import models

class Book (models.Model) :
name = models.CharField(max length=50)
pub date = models.DateField()

views.py (the business logic)

from django.shortcuts import render
from models import Book

def latest books (request) :
book list = Book.objects.order by('-pub date') [:10]
return render (request, 'latest books.html', {'book list': book list})

urls.py (the URL configuration)

from django.conf.urls.defaults import *
import views

urlpatterns = patterns('',
(r'~latest/$"', views.latest books),

)

latest books.html (the template)

<html><head><title>Books</title></head>
<body>
<h1>Books</h1>

% for book in book list %}
<1i>{{ book.name }}</1i>

Q

% endfor %}

</body></html>

Again, don’t worry about the particulars of syntax; just get a feel for the overall design. The main thing

to note here is the separation of concerns:

m The models.py file contains a description of the database table, represented by a Python class.
This class is called a model. Using it, you can create, retrieve, update and delete records in your
database using simple Python code rather than writing repetitive SQL statements.

m The views.py file contains the business logic for the page. The latest books() function is called
a view.

m The urls.py file specifies which view is called for a given URL pattern. In this case, the URL
/latest/ will be handled by the latest_books() function. In other words, if your domain is

example.com, any visit to the URL http://example.com/latest/ will call the latest books()

function.
m The latest books.html file is an HTML template that describes the design of the page. It uses a

template language with basic logic statements — e.g., {% for book in book_list %}.

Taken together, these pieces loosely follow a pattern called Model-View-Controller (MVC). Simply
put, MVC is way of developing software so that the code for defining and accessing data (the model) is
separate from request-routing logic (the controller), which in turn is separate from the user interface

(the view).

http://example.com/latest/

A key advantage of such an approach is that components are loosely coupled. Each distinct piece of a
Django-powered Web application has a single key purpose and can be changed independently without
affecting the other pieces. For example, a developer can change the URL for a given part of the
application without affecting the underlying implementation. A designer can change a page’s HTML
without having to touch the Python code that renders it. A database administrator can rename a
database table and specify the change in a single place, rather than having to search and replace through

a dozen files.

Views and URLconfs
Views
A Django view is the Python function that is called according to a particular URL mapping for an app
page. Each Django view in your Web Framework app needs to be defined in the views.py file, which is

a Python module that is located in your app's directory.

Essentially, a view is just a Python function that takes an HttpRequest as its first parameter and returns
an instance of HttpResponse. In order for a Python function to be a Django view, it must do these two

things.

URLconfs
A clean, elegant URL scheme is an important detail in a high-quality Web application. Django lets you
design URLs however you want, with no framework limitations. There’s no .php or .cgi required, and

certainly none of that 0,2097,1-1-1928,00 nonsense.

A URLconf is like a table of contents for your Django-powered Web site. Basically, it’s a mapping
between URLs and the view functions that should be called for those URLs. It’s how you tell Django,
“For this URL, call this code, and for that URL, call that code.” For example, “When somebody visits

the URL /foo/, call the view function foo_view(), which lives in the Python module views.py.”

How Django processes a request
When a user requests a page from your Django-powered site, this is the algorithm the system follows to
determine which Python code to execute:
1. Django runs through each URL pattern, in order, and stops at the first one that matches the
requested URL.

https://docs.djangoproject.com/en/1.8/topics/http/urls/#how-django-processes-a-request

2. Once one of the regexes matches, Django imports and calls the given view, which is a simple
Python function. The view gets passed the following arguments:
3. If no regex matches, or if an exception is raised during any point in this process, Django

invokes an appropriate error-handling view.

Example

Here’s a sample view and the corresponding URLconf:

#views.py

from django.http import HttpResponse
import datetime

def current datetime (request) :
now = datetime.datetime.now ()
html = "<html><body>It is now %s.</body></html>" % now
return HttpResponse (html)

Let’s step through the changes we’ve made to views.py to accommodate the current_datetime view.

m We’ve added an import datetime to the top of the module, so we can calculate dates.

m The new current_datetime function calculates the current date and time, as a datetime.datetime
object, and stores that as the local variable now.

m The second line of code within the view constructs an HTML response using Python’s
“format-string” capability. The %s within the string is a placeholder, and the percent sign after
the string means “Replace the %s in the preceding string with the value of the variable now.”
The now variable is technically a datetime.datetime object, not a string, but the %s format
character converts it to its string representation, which is something like "2008-12-13
14:09:39.002731". This will result in an HTML string such as "<htmI><body>It is now
2008-12-13 14:09:39.002731.</body></htmI>".

m (Yes, our HTML is invalid, but we’re trying to keep the example simple and short.)

m Finally, the view returns an HttpResponse object that contains the generated response.

After adding that to views.py, add the URLpattern to urls.py to tell Django which URL should handle

this view. Something like /time/ would make sense:

urls.py (the URL configuration)

from django.conf.urls.defaults import patterns, include, url
from mysite.views import hello, current datetime

urlpatterns = patterns('',
url(r'~time/S$"', current datetime),

)

Now, when we enter the page /time/, the URLconfs will point us to the current datetime function

in views, and display an HTML page.

URLconfs and Loose Coupling

Now’s a good time to highlight a key philosophy behind URLconfs and behind Django in general: the
principle of loose coupling. Simply put, loose coupling is a software development approach that values
the importance of making pieces interchangeable. If two pieces of code are loosely coupled, then

changes made to one of the pieces will have little or no effect on the other.

Django’s URLconfs are a good example of this principle in practice. In a Django web application, the
URL definitions and the view functions they call are loosely coupled; that is, the decision of what the
URL should be for a given function, and the implementation of the function itself, reside in two

separate places. This lets you switch out one piece without affecting the other.

For example, consider our current_datetime view. If we wanted to change the URL for the
application — say, to move it from /t ime/ to /currenttime/ — we could make a quick change to the
URLconf, without having to worry about the view itself. Similarly, if we wanted to change the view
function — altering its logic somehow — we could do that without affecting the URL to which the

function is bound.

Furthermore, if we wanted to expose the current_datetime functionality at several URLs, we
could easily take care of that by editing the URLconf, without having to touch the view code. In this
example, our current_datetime is available at two URLs. It’s a contrived example, but this

technique can come in handy:

urls.py (the URL configuration)

urlpatterns = patterns('',

url (r'~hello/$', hello),

url (r'*time/$"', current datetime), url (r'“anothertimepage/$"',
current datetime),

)

URLconfs and views are loose coupling in action.

Templates
Being a web framework, Django needs a convenient way to generate HTML dynamically. The most
common approach relies on templates. A template contains the static parts of the desired HTML output
as well as some special syntax describing how dynamic content will be inserted. Django’s template
engine provides a powerful mini-language for defining the user-facing layer of your application,
encouraging a clean separation of application and presentation logic. Templates can be maintained by

anyone with an understanding of HTML; no knowledge of Python is required.

A template is simply a text file. It can generate any text-based format (HTML, XML, CSV, etc.). A
template contains variables, which get replaced with values when the template is evaluated, and tags,

which control the logic of the template. Below is a minimal template that illustrates a few basics.

{% extends "base generic.html" %}
{%$ block title %$}{{ section.title }}{% endblock %}

{%$ block content %}
<hl>{{ section.title }}</hl>

{% for story in story list %}
<h2> -

{{ story.headline|upper }}

</h2>
<p>{{ story.tease|truncatewords:"100" }}</p>

{% endfor %}

{%$ endblock %}

Understanding Templating Language

Variables look like this: { { variable }}. When the template engine encounters a variable, it
evaluates that variable and replaces it with the result. Variable names consist of any combination of
alphanumeric characters and the underscore (" _"). The dot (".") also appears in variable sections,
although that has a special meaning, as indicated below. Importantly, you cannot have spaces or

punctuation characters in variable names.

In the above example, { { section.title }} will be replaced with the title attribute of the
section object. If you use a variable that doesn’t exist, the template system will insert the value of the

string if invalid option, which is set to " (the empty string) by default.

Tags look like this: {$ tag %}. Tags are more complex than variables: Some create text in the
output, some control flow by performing loops or logic, and some load external information into the
template to be used by later variables. Some tags require beginning and ending tags (i.e. {$ tag %}

... tag contents ... {$ endtag $%}). In the example above, you can see that we used a for tag.

Template Inheritance

The most powerful — and thus the most complex — part of Django’s template engine is template
inheritance. Template inheritance allows you to build a base “skeleton” template that contains all the
common elements of your site and defines blocks that child templates can override. The block and
extends blocks set up template inheritance, a powerful way of cutting down on “boilerplate” in

templates.

You can read more about templates here.

Models
A model is the single, definitive source of information about your data. It contains the essential fields

and behaviors of the data you’re storing. Generally, each model maps to a single database table.

The basics:

e FEach model is a Python class that subclasses django.db.models.Model.

e FEach attribute of the model represents a database field.
e With all of this, Django gives you an automatically-generated database-access API for several

different DBMS systems, including SQLites, MySQL, and Postgres.

https://docs.djangoproject.com/en/1.7/topics/templates/#tags
https://docs.djangoproject.com/en/1.7/topics/templates/#id1
https://docs.djangoproject.com/en/1.8/ref/models/instances/#django.db.models.Model

Example

This example model defines a Person, which hasa first name and last name:

from django.db import models

class Person (models.Model) :
first name = models.CharField(max length=30)
last name = models.CharField(max length=30)

first name and last name are fields of the model. Each field is specified as a class attribute, and

each attribute maps to a database column.

The above Person model would create a database table like this:

CREATE TABLE myapp_ person (
*id® auto increment NOT NULL PRIMARY KEY,
"first name’ varchar (30) NOT NULL,
"last name varchar (30) NOT NULL
) 8
Some technical notes:
e The name of the table, myapp _person, is automatically derived from some model metadata
but can be overridden.
e An id field is added automatically, but this behavior can be overridden.
e The CREATE TABLE SQL in this example is formatted using MySQL syntax, but it’s worth

noting Django uses SQL tailored to the database backend specified in your settings file.

Additional Links
The Django Book (http://www.djangobook.com/en/2.0/index.html)

Django Project (https://www.djangoproject.com/)

http://www.djangobook.com/en/2.0/index.html
https://www.djangoproject.com/

