

Building a Decision Tree

- The tree should predict labels of training data accurately
- The tree should be compact, so that it generalizes well to non-training data without overfitting

Bad Algorithm for Building a Tree

Generate all possible trees and pick the smallest tree that is consistent with the training data

Good Algorithm for Building a Tree

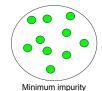
- Greedily choose "best" feature by which to split training examples and make this the root node of a (sub)-tree
- Recursively generate subtrees for the split training examples using remaining features
- · Stop when leaves are perfectly classified

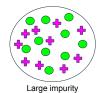
How do we determine the greedy choice, i.e., "best" feature to use to split training examples?

- The greedy choice feature should aim to minimize the depth of the tree
- A perfect feature choice divides the examples into sets, each of which are all 0 or all 1 and thus will be leaves of the tree
- A poor feature choice divides the examples into sets with the same proportion of 0 and 1 classes as the undivided set

Entropy

Entropy is a measure of uncertainty or impurity.

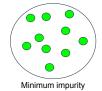




Acquisition of information corresponds to a reduction in entropy.

Entropy

Entropy = $\sum_{i} -p_{i} \log_{2} p_{i}$ where p_{i} is the probability of class i



$$\begin{array}{lll} \text{Entropy} & = - & (10/10) \log_2(10/10) + & \text{Entropy} & = - & (10/12) \log_2(10/12) + & \text{Entropy} & = - & (10/20) \log_2(10/20) + \\ & & - & (0/10) \log_2(0/10) & & - & (2/12) \log_2(2/12) & & - & (10/20) \log_2(10/20) \\ & & = & 0.65 & & = & 1 \end{array}$$

Information Gain

The *information gain* when we divide the data using a particular feature is the reduction in entropy.

When deciding what feature to test at the root of a tree, we look at the entropy at the root node (parent) and the entropy at the children of the root node.

Information Gain = entropy(parent) - [weighted average entropy(children)]

Using different features at the root to split the data will result in different children with different entropies.

We greedily choose the feature that maximizes information gain

```
Information Gain (IG) Examples

IG(feature) = entropy(parent) -
[weighted average entropy(children)]

IG(isLarge?) = (4/10)log,(4/10) + -(6/10)log,(6/10) -
[(6/10) * entropy(small examples)]

Weights of two children

Weights of two children
```

```
Information Gain (IG) Examples

IG(feature) = entropy(parent) -
[weighted average entropy(children)]

IG(isLarge?) = -(4/10)log<sub>2</sub>(4/10) + -(6/10)log<sub>2</sub>(6/10) -
[ (6/10) * entropy(small examples) +
(4/10) * entropy(large examples) ]

= -(4/10)log<sub>2</sub>(4/10) + -(6/10)log<sub>2</sub>(6/10) -
[ (6/10) * (-(2/6)log<sub>2</sub>(2/6) + -(4/6)log<sub>2</sub>(4/6)) +
(4/10) * (-(2/4)log<sub>2</sub>(2/4) + -(2/4)log<sub>2</sub>(2/4)) ]

\approx 0.53 + 0.44 -
[ (6/10) * (0.53 + 0.39) +
(4/10) * (0.55 + 0.5) ]

\approx 0.018
```

```
Information Gain (IG) Examples

IG(feature) = entropy(parent) - [weighted average entropy(children)]

IG(isRed?) = -(4/10)log<sub>2</sub>(4/10) + -(6/10)log<sub>2</sub>(6/10) - [(5/10) * entropy(blue examples) + (5/10) * entropy(red examples)]

= -(4/10)log<sub>2</sub>(4/10) + -(6/10)log<sub>2</sub>(6/10) - [(5/10) * (-(2/5)log<sub>2</sub>(2/5) + -(3/5)log<sub>2</sub>(3/5)) + (5/10) * (-(2/5)log<sub>2</sub>(2/5) + -(3/5)log<sub>2</sub>(3/5))]

\approx 0.53 + 0.44 - [(5/10) * (0.53 + 0.44) + (5/10) * (0.53 + 0.44)]
\approx 0.000
```

```
Information Gain (IG) Examples

IG(feature) = entropy(parent) -
[weighted average entropy(children)]

IG(isFilled?) = -(4/10)log<sub>2</sub>(4/10) + -(6/10)log<sub>2</sub>(6/10) -
[(6/10) * entropy(hollow examples) +
(4/10) * entropy(filled examples)]

= -(4/10)log<sub>2</sub>(4/10) + -(6/10)log<sub>2</sub>(6/10) -
[(6/10) * (-(1/6)log<sub>2</sub>(1/6) + -(5/6)log<sub>2</sub>(5/6)) +
(4/10) * (-(3/4)log<sub>2</sub>(3/4) + -(1/4)log<sub>2</sub>(1/4))]

\approx 0.53 + 0.44 -
[(6/10) * (0.43 + 0.22) +
(4/10) * (0.31 + 0.50)] \approx 0.256
```

Information Gain (IG) Examples IG(feature) = entropy(parent) - [weighted average entropy(children)] IG(isCircle?) = -(4/10)log₂(4/10) + -(6/10)log₂(6/10) - [(5/10) * entropy(square examples) + (5/10) * entropy(circle examples)] = -(4/10)log₂(4/10) + -(6/10)log₂(6/10) - [(5/10) * (-(1/5)log₂(1/5) + -(4/5)log₂(4/5)) + (5/10) * (-(3/5)log₂(3/5) + -(2/5)log₂(2/5))] $\approx 0.53 + 0.44 - [(5/10) * (0.46 + 0.26) + (5/10) * (0.44 + 0.53)]$ ≈ 0.125

Variations

- What if our features are not binary (e.g., red/blue, small/large, circle/square) but can take on many discrete values (e.g., red/green/blue/purple/orange, small/medium/large, circle/triangle/rhombus/square)? What if we have continuous, real-valued features?
- In our tree building algorithm, to end the recursion we said to "stop when leaves are perfectly classified." What if data cannot be perfectly classified?
- Pruning a tree may yield more compact trees that are better predictors on new data (i.e., less prone to overfitting)

Overfitting

- On some problems, a large tree will be constructed when there is actually no pattern to be found
- Consider the problem of trying to predict whether the roll of a die will come up 6
 or not. Our features are the weather outside when the die was rolled, the name
 of the roller, and whether the die landed on a table or the floor.
- If the die is fair, the right thing to learn is a tree with a single node that says "no"
- But our decision tree learning algorithm will seize on any pattern it can find in the input. If it turns out that there are 2 rolls when Wendy rolled the die on the floor when it was rainy out, then the algorithm may construct a path that predicts 6 in that case.
- This problem is called *overfitting*
- Overfitting becomes more likely as the hypothesis space and the number of inputs grows, and less likely as we increase the number of training examples

Pros and Cons of Decision Trees

Pros

- Easy to understand how to implement
- Work well in practice for many problems
- Easy to explain model predictions, i.e., interpretable

Cons

- Need to store large tree
- No principled pruning method to avoid overfitting
- Not effective for all problems, e.g., the majority function, which returns 1 if and only if more than half the inputs are 1, and returns 0 otherwise (requires an exponentially large decision tree)

